Influence of cationic substitution on the electronic-energy structure and optical properties of Cu<sub>2</sub>B<sup>IV</sup>S<sub>3</sub>(B<sup>IV</sup>=Si, Ge, Sn) compounds

Authors

  • Д. І. Блецкан Uzhhorod National University, Ukraine
  • В. В. Вакульчак Uzhhorod National University, Ukraine
  • Ю. В. Кампов Uzhhorod National University, Ukraine
  • І. П. Студеняк Uzhhorod National University,

DOI:

https://doi.org/10.24144/2415-8038.2019.46.54-75

Keywords:

Electronic band structure, Density of states, Spatial distribution of valence charge, Optical functions

Abstract

Purpose. Ternary Cu2B IVS3 (BIV = Si, Ge, Sn) compounds are promising materials that can be used as absorbing layers of solar cells. Methods. This paper presents the results of calculations of the band structure, the state density distribution of the electron density and such optical functions as real ε1 and imaginary ε2 part of the dielectric permittivity, reflectivity R, absorption coefficient α and refractive index n of Cu2B IVS3 compounds. Results. According to the results of the band structure calculations in the LDA+U approximation, the monoclinic phases Cu2SiS3, Cu2GeS3 and Cu2SnS3 are direct-gap semiconductors with the calculated band gaps of 2.46 eV, 1.5 eV and 0.93 eV, respectively, which agrees well with the experimental values obtained from the analysis of the intrinsic absorption edge. Valence band with for monoclinic phases Cu2B IVS3 consists of four subbands separated by forbidding intervals. The analysis of partial contributions into the density of electronic states allowed to identify the genetic origin of different subbands of the valence band, and also to obtain the formation of a chemical bond in the crystals under investigation. For optimized structures of Cu2SiS3, Cu2GeS3 and Cu2SnS3,the spectra of optical functions in the wide range energy of fundamental absorption were calculated for the first time using a unified technique. The spectra of the optical functions of these crystals are characterized by significant polarization anisotropy and are qualitatively similar to each other. The electron density was calculated and maps of the distribution of charge of valency electrons in the planes along the Cu-S and BIV–S bond lines in various structural units of Cu2B IVS3 crystals were constructed, which made it possible to describe the features of the formation of a chemical bond between atoms forming the corresponding crystal. Conclusions. : As a result of quantum-chemical calculations, it was established that the structure of the energy bands of monoclinic Cu2B IVS3 crystals is qualitatively similar to each other, contain the same number of filled bands (44) and have a characteristic topology in which traced four allowed energy region. According to the calculations in the LDA+U approximation, all three crystals are direct-gap semiconductors, the bandgap of which decreases monotonically with increasing atomic number of the cation BIV (Si→Ge→Sn; 2.46 еV → 1.5 еV → 0.93 еV). It has been established that the monoclinic phases Cu2B IVS3 are semiconductors with a complex system of covalent-ionic interatomic bonds

References

Fabrication of Cu2GeS3-based thin film solar cells by sulfurization of Cu/Ge stacked precursors / H. Araki , K. Chino , K. Kimura, N. Aihara , K. Jimbo , H. Katagiri // Jpn. 69 Uzhhorod University Scientific Herald. Series Physics. Issue 46. — 2019 Appl. Phys. — 2014. — V. 53, № 5S1. — Р. 05FW10–1 – 05FW10–4.

Multistep deposition of Cu2Si(S, Se) 3 and Cu2ZnSiSe4 high band gap absorber materials for thin film solar cells / ElAnzeery H., Buffière M., Ben Messaoud K., Oueslati S., Brammertz G., El Daif O., Cheyns D., Guindi R., Meuris M., Poortmans J. // Phys. Status Solidi (RRL). — 2015. — V. 9, № 6. — P. 338 – 343.

Fabrication of Cu2SnS3 thin-film solar cells with power conversion efficiency of over 4% /Ayaka Kanai, Kotoba Toyonaga, Kotaro Chino, Hironori Katagiri, Hideaki Araki // Jpn. J.Appl. Phys. — 2015. — V. 54, № 8S1. — P. 08KC06–1 – 08KC06–4.

Cu2SnS3 based solar cell with 3% efficiency / Chierchia R., F. Pigna, M. Valentini, C. Malerba,E. Salza, P. Mangiapane, T. olichetti, A. Mittiga // Phys. Stat. Sol. (c). — 2016. — V. 13, №1. — P. 35 – 39.

Secondary phase formation during monoclinic Cu2SnS3 growth for solar cell application / De Wild J., Robert E.V.C., ElAdib B., Abou-Ras D., P.J.Dale // Sol. Energy Mater. Sol. Cells. — 2016. — V. 157. — P. 259 – 265.

Toyonaga K. Preparation and characterization of CuSixSn1−xS3 / K. Toyonaga, H. Araki //Phys. Stat. Sol. (c). — 2015. — V.12, № 6. — P. 753 – 756.

Syntheses and X-ray Diffraction, Photochemical, and Optical Characterization of CuSixSn1−xS3 (0.4 ≤ x ≤ 0.6) for Photovoltaic Applications / Lafond, A., Cody, J. A.,Souilah, M., Guillot-Deudon, C., Kiebach, R., Bensch, W. // Inorg. Chem. — 2007. — V.46, № 4. — P. 1502 – 1506.

Chen Q. Optical properties and electronic structures of Cu2SnS3, Cu2GeS3, and their solid solution Cu2(Ge, Sn)S3 / Q.Chen, .Maeda , T.Wada // Jpn. J. Appl. Phys. — 2018. — V. 57,№ 8S3. — P. 08RC20–1 – 08RC20–8.

Structural diversity and electronic properties of Cu2SnX3 (X = S, Se): A first-principles investigation / Zhai, Y.-T., Chen, S., Yang, J.-H., Xiang, H.-J., Gong, X.-G., Walsh, A., Wei, S.-H. // Phys. Rev. B. — 2011. — V. 84, №7. — P. 075213–1 – 075213–6.

Electronic and optical properties of Cu2XS3 (X = Si, Ge, Sn): Prospects for photovoltaics /Shaposhnikov V.L., Krivosheeva A.V., Borisenko V.E., Lazzari J.-L. // Sci. Lett. J. — 2012.— V. 1, № 15. — Р. 1 – 5.

Shigemi A. Firstprinciples calculation of Cu2SnS3 and related compounds / A. Shigemi, T.Maeda, T. Wada // Phys. Status Solidi (b). — 2015. — V. 252, № 6. — P. 1230 – 1234.

Valence band splitting in Cu2(Sn, Ge, Si)S3: Effect on optical absorption spectra / de Wild J.,Kalesaki E., Wirtz L., Dale P.J. // Phys. Status Solidi (RRL). — 2017. — V. 11, № 2. — Р.1 – 5.

Dielectric function and double absorption onset of monoclinic Cu2SnS3 : Origin of experimental features explained by first-principles calculations / Crovetto, A., Chen, R., Ettlinger, R. B., Cazzaniga, A. C., Schou, J., Persson, C., Hansen, O. // Sol. Energy Mater.Sol. Cells. — 2016. — V. 154. — P. 121 – 129.

Synthesis, structure, and electronic properties of Cu2SiQ3 (Q = S, Se) / Chen X.-a., Wada H.,Sato A., Nozaki H. // J. Alloys Compd. — 1999. — V. 290. — P. 91 – 96.

De Chalbaud L.M. Synthesis and single-crystal structural study of Cu2GeS3 / L.M. de Chalbaud , G.D. de Delgado , J.M.Delgado // Mater. Res. Bull. — 1997. — V32, № 10.— P. 1371 – 1376.

Crystal structure and twinning of monoclinic Cu2SnS3 / M.Onoda, X.Chen, A.Sato, H.Wada // Mater. Res. Bull. — 2000. — V. 35, № 9. — P. 1563 – 1570.

Hohenberg P. Inhomogeneous Electron Gas / P.Hohenberg, W. Kohn // Phys. Rev. — 1964. — V. 136, № 3. — P. B864 – B871.

Kohn W. Self-Consistent Equations Including Exchange and Correlation Effects / W. Kohn,L.J. Sham // Phys. Rev. — 1965. — V. 140, № 4. — P. A1133 – A1138.

SIESTA is both a method and its computer program implementation, to perform efficient electronic structure calculations and ab initio molecular dynamics simulations of colecules and solids [Електронний ресурс] / Режим доступу : departments.icmab.es/leem/siesta/.

Anisimov V.I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method / V.I. Anisimov, F. Aryasetiawan, and A.I. Lichtenstein // J. Phys.: Condens. Matter. — 1997. — V. 9, № 4. — P. 767 – 808.

LDA+U/GGA+U calculations of structural and electronic properties of CdTe: Dependence on the effective U parameter / Y. Wu, G. Chen, Y. Zhu, W.-J. Yin, Y.Yan, M. Al-Jassim, S.J.Pennycook // Comput. Mater. Sci. — 2015. — V. 98. — P. 18 – 23.

Chadi D.J. Special Points in the Brillouin Zone / D.J.Chadi and M.L.Cohen // Phys. Rev. B.— 1973. — V. 8, № 12. — P. 5747 – 5753.

Monkhorst H.J. Special points for Brillouin-zone integrations / H.J.Monkhorst and J.D.Pack // Phys. Rev. B. — 1976. — V. 13, № 12. — P. 5188 – 5192.

Bercha D.M. Non-standard anisotropy of the energy spectrum of a layered TlGaSe2 crystal /D.M.Bercha, K.E.Glukhov and M.Sznajder // Phys. Status Solidi (b). — 2011. — V. 248, №6. — Р. 1446 – 1452.

Зейман Дж. Принципы теории твердого тела / Дж. Зейман. — М.: Мир. 1974. — 472 c.

Aruga A. Structure and Photoacoustic Spectra of Ag-doped Cu2SiS3 particles / A.Aruga and Y. Okamoto // Jpn. J. Appl. Phys. — 2006. — V. 45, № 5B. — P. 4616 – 4620.

Thin film solar cells based on the ternary compound Cu2SnS3 / D.M. Berg, R. Djemour, L. Gütay, G. Zoppi, S. Siebentritta, P.J. Dalea // Thin Solid Films. — 2012. — V. 520, № 19. — P. 6291 – 6294.

Соболев В.В., Немошкаленко В.В. Электронная структура твердых тел в области фундаментального края поглощения / В.В. Соболев, В.В. Немошкаленко. — Киев: Наук.

думка, 1992. — 568 с.

Published

2019-12-31

Issue

Section

Статті