PARAMETRIC SYNTHESIS OF MODELS FOR MULTICRITERIAL ESTIMATION OF TECHNOLOGICAL SYSTEMS

Authors

DOI:

https://doi.org/10.30837/2522-9818.2017.2.005

Keywords:

technological system, design, reengineering, optimization, quality criteria, multicriteria estimation model, utility function, Kolmogorov-Gabor polynomial

Abstract

The subject matter of the article is the problem of multicriteria estimation of the properties of technological systems (TS) in the process of their structural-parametric optimization. The goal of the study is to increase the efficiency of procedures for multicriteria estimation of TS properties at the stages of their design and reengineering using the technology of comparative parametric identification of the preferences of a decision maker. The objectives are: to increase the adequacy of the additive-multiplicative model of multifactor estimation of variants of building a TS based on the Kolmogorov-Gabor polynomial; to develop an efficient method of parametric synthesis of additive-multiplicative models of multifactor estimating and selecting variants of building a TS based on a decision maker’s preferences; to carry out the analysis and give recommendations on the practical use of the suggested method of parametric synthesis of models of multicriteria TS estimation. The methods used are: system analysis, decision theory, identification theory, multicriteria optimization methods. The following results are obtained: to increase the adequacy of the models of TS multifactor estimation, it is suggested to use the utility function of partial criteria that makes it possible to realize not only linear, convex or concave, but also S (Z)-like dependencies on their values. To solve the problem of parametric synthesis of models of multicriteria TS estimation, the method of comparative identification of a decision maker’s preferences is improved on the basis of the procedures for calculating the Chebyshev point and the residual vector. The experimental study of the efficiency of the suggested variant of the method is carried out. Conclusions. The application of the suggested function in additive-multiplicative models of TS multi-factor estimation does not change the methods for selecting their parameters. The suggested improvement of the method of comparative identification of a decision maker’s preferences on the basis of the procedures for calculating the Chebyshev point and the residual vector for the parametric synthesis of models of TS multicriteria estimation enables covering all practically important situations of selection described by binary relations of equivalence, strict, and nonstrict preferences. The experimental study of the method confirms the increase in the efficiency of the procedures of parametric synthesis of models built on its basis in comparison with the method of group accounting of arguments on the basis of genetic algorithms. Practical application of the results obtained in the support systems for making multicriteria design and management decisions will improve their accuracy and, on this basis, increase the functional and cost efficiency of modern TS.

Author Biography

Vladimir Beskorovainyi, Kharkiv National University of Radioelectronics

Doctor of Sciences (Engineering), Professor, Kharkiv National University of Radioelectronics, Professor of the Department of System Engineering

References

Ilyushina, S. V. (2014), "Methods of optimization of technological processes" [Metody optimizatsii tekhnologicheskikh protsessov]. Vestnik Kazanskogo tekhnologicheskogo universiteta. Vol. 17. No. 8. P. 323-327.

Dovbysh, A. S., Berest, O. B. (2014), "Three-alternative learning system for decision support for the automation of the technological process" [Trokhal'ternativnaya obuchayushchayasya sistema podderzhki prinyatiya resheniy dlya avtomatizatsii tekhnologicheskogo protsessa]. Vestnik Tomskogo gosudarstvennogo universiteta. Upravleniye, vychislitel'naya tekhnika i informatika. No. 4 (29). P. 31-40.

Frolov, V. V. (2012), "Method of combinatorial-optimization design of technological machining systems " [Metod kombinatorno-optimizatsionnogo proyektirovaniya tekhnologicheskikh sistem mekhanicheskoy obrabotki]. Otkrytyye informatsionnyye i komp'yuternyye integrirovannyye tekhnologii. No. 54. P. 125-131.

Greco, S., Ehrgott, M., Figueira, J. R. (2016), Multiple Criteria Decision Analysis – State of the Art Surveys. New York: Springer. 1346 p.

Kaliszewski, I., Kiczkowiak, T., Miroforidis, J. (2016), "Mechanical design, Multiple Criteria Decision Making and Pareto optimality gap". Engineering Computations. Vol. 33 (3). P. 876-895.

Kryuchkovskiy, V. V., Petrov, E. G., Sokolova, N. A., Khodakov, V. Ye. (2013), Introduction to the normative theory of decision-making [Vvedeniye v normativnuyu teoriyu prinyatiya resheniy]. Kherson: Grin' D. S. 284 p.

Ovezgel'dyyev, O. A., Petrov, E. G., Petrov, K. E. (2002), Synthesis and identification of models of multifactor estimation and optimization [Sintez i identifikatsiya modeley mnogofaktornogo otsenivaniya i optimizatsii]. Kyiv: Naukova dumka. 161 p.

Fishbern, P., edited by Moudera Dzh., Elmagrabi S.: Translated from English (1981), "Theory of Utility. Research of operations: V 2 t" [Teoriya poleznosti. Issledovaniye operatsiy: V 2 t.]. Metodologicheskiye osnovy i matematicheskiye metody. Moscow: Mir. Vol. 1. P. 448-480.

Raskin, J. G., Seraya, O. V. (2008), Fuzzy Mathematics. Fundamentals of the theory. Applications [Nechetkaya matematika. Osnovy teorii. Prilozheniya]. Kharkiv: Parus.352 p.

Petrov, E. G., Shilo, N. S. (2003), "Methodology for assessing the adequacy of models of point identification of individual preferences of decision-makers" [Metodika otsenki adekvatnosti modeley tochechnoy identifikatsii individual'nykh predpochteniy LPR]. Radioelektronika i informatika. No. 2. P. 97-103.

Beskorovainyi, V V, Trofimenko, I V (2006), "Structural-parametric identification of models of multifactor estimation" [Strukturno-parametrychna identyfikatsiya modeley bahatofaktornoho otsinyuvannya]. Systems of Arms and Military Equipment. No. 3 (7). P. 56-59.

Petrov, K. E., Kryuchkovskiy, V. V. (2009), Comparative structural-parametric identification of models of scalar multivariate estimation: monograph [Komparatornaya strukturno-parametricheskaya identifikatsiya modeley skalyarnogo mnogofaktornogo otsenivaniya: monografiya]. Kherson: Oldi-plyus. 294 p.

Petrov, E. G., Bulavin, D. A., Petrov, K. E. (2004), "Solution of the problem of structural-parametric identification of the model of individual multifactor estimation by the method of group accounting of arguments" [Resheniye zadachi strukturno-parametricheskoy identifikatsii modeli individual'nogo mnogofaktornogo otsenivaniya metodom gruppovogo ucheta argumentov]. Avtomatizirovannyye sistemy upravleniya i pribory avtomatiki. Issue 129. P. 4-13.

Beskorovainyi, V. V., Soboleva, E. V. (2010), "Identification of the partial utility of multifactorial alternatives using S-shaped functions" [Identifikatsiya chastnoy poleznosti mnogofaktornykh al'ternativ s pomoshch'yu S-obraznykh funktsiy]. Bionika intellekta. No. 1. P. 50-54.

Petrov, E. G., Beskorovainyi, V. V., Pisklakova, V. P. (1997), "Formation of utility functions of particular criteria in multicriterion estimation problems" [Formirovaniye funktsiy poleznosti chastnykh kriteriyev v zadachakh mnogokriterial'nogo otsenivaniya]. Radioelektronika i informatika. No. 1. P. 71-73.

Beskorovainyi, V. V., Trofimenko, I. V. (2005), "Parametric identification of additive-multiplicative models of multifactor estimation" [Parametricheskaya identifikatsiya additivno-mul'tiplikativnykh modeley mnogofaktornogo otsenivaniya]. Radioelectronics and Informatics. No. 4. P. 41-46.

Downloads

How to Cite

Beskorovainyi, V. (2017). PARAMETRIC SYNTHESIS OF MODELS FOR MULTICRITERIAL ESTIMATION OF TECHNOLOGICAL SYSTEMS. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (2 (2), 5–11. https://doi.org/10.30837/2522-9818.2017.2.005

Issue

Section

Technical Sciences