Fuzzy logic in the problems of determining the economic parameters of project implementation

Authors

DOI:

https://doi.org/10.30837/ITSSI.2024.27.096

Keywords:

network graph; fuzzy goal; critical path; membership function; duration.

Abstract

The goal of this work is to forecast project execution terms and its main economic parameters using graph theory and fuzzy logic methods. The subject of research in the article is the method of calculating the main properties or parameters of the project, forecasting the terms of its implementation and the possibility of taking into account force majeure situations. The article discusses the task of finding the optimal plan for the project of creating an e-commerce site and calculating its main economic parameters. The work uses methods of the theory of network planning and management. Fuzzy logic methods are used to solve the fuzzy optimization problem. Graph theory methods, namely the CPM critical path method, are used to forecast project deadlines. The following results were obtained: the main economic parameters were calculated for two versions of the project to create an e-commerce site – sequential, when the team does not have many developers to implement it (or enough resources), and parallel execution of work, which allows you to optimize the execution time by involving additional workers. The cost of both projects was also calculated, which in the future can help managers draw conclusions regarding the implementation of one or another planning option for this type of project. For the first project, the project work plan will be completed in a time not exceeding 230 days, with a reliability of 30%. Or does not exceed 295 days with a reliability of 80% percent. For the second project, the project work plan will be completed in a time not exceeding 230 days, with a reliability of 30%. Or does not exceed 278 days with a reliability of 70% percent. Conclusions: the paper proposes a fuzzy mathematical model for finding the optimal plan and calculating the main economic parameters of the project of creating an e-commerce site with a fuzzy set of plans and a vaguely defined goal. The work also presents a method for solving this problem. The obtained results of the research are of great value for planning the project, for solving the question of the feasibility of its initiation, for forecasting the resources that will be needed for its implementation. These indicators are essential for improving processes and correct allocation of work, which can help strengthen competitiveness and increase project profits.

Author Biographies

Olha Matviienko, Kharkiv National University of Radio Electronics

PhD (Engineering Sciences), Associate Professor at the Department of Applied Mathematics

Serhii Zakutnii, Kharkiv National University of Radio Electronics

Postgraduate at the Department of Applied Mathematics

References

Список літератури

Mahmoud A.H. Critical Paths in a Fuzzy Construction Project Network. International Journal of Civil Engineering and Technology (IJCIET). 2019. 10(1). P. 1313–1321. URL: https://www.researchgate.net/publication/336072792_Critical_Paths_in_a_Fuzzy_Construction_Project_Network

Gajzler M., Zima K. Evaluation of Planned Construction Projects Using Fuzzy Logic. International Journal of Civil Engineering. 2017. 15. P. 641–652. DOI: 10.1007/s40999-017-0177-8

Plebankiewicz E., Zima K., Wieczorek D. Modelling of Time, Cost and Risk of Construction with Using Fuzzy Logic. Journal of Civil Engineering and Management. 2021. 27(6). P. 412–426. DOI: 10.3846/jcem.2021.15255

Haghighi M. H., Ashrafi M., Nazerfard E. A Novel Fuzzy Bayesian Network-Based Approach for the Project Time-Cost-Quality Trade-off Problem. AUT Journal of Modeling and Simulation. 54(2). 2022. P. 185–196. DOI: 10.22060/miscj.2023.20752.5266

Abbass, Huda Fadhil, Al-Kanani, Idean Hassan Proposed Ranking Function to Solve the Fuzzy Project Management and Network Problem. Journal of Physics: Conference Series. 2021. DOI: 10.1088/1742-6596/1963/1/012071

Ercan Akan, Sibel Bayar. Interval Type-2 Fuzzy Program Evaluation and Review Technique for Project Management in Shipbuilding. Ships and Offshore Structures. 2021. P. 1–19. DOI: 10.1080/17445302.2021.1950350

Juan Carlos Figueroa-García, Germán Hernández-Pérez, Jennifer Soraya Ramos-Cuesta. Uncertain Project Network Analysis with Fuzzy-PERT and Interval Type-2 Fuzzy Activity Durations. Heliyon. 2023. Volume 9. Issue 4. DOI: https://doi.org/10.1016/j.heliyon.2023.e14833

Mohagheghi V., Meysam S., Mousavi S.M., Vahdani B. Analyzing Project Cash Flow by a New Interval Type-2 Fuzzy Model with an Application to Construction Industry. Neural Computing and Applications. 2021. 28. P. 3393–3411. DOI: 10.1007/s00521-016-2235-6

Родащук Г.Ю., Концеба С.М., Ліщук Р.І., Скуртол С.Д. Мережеве планування в управлінні ІТ-проектами. Таврійський науковий вісник. Серія: Технічні науки. 2023. 1. C. 42–56. DOI: https://doi.org/10.32851/tnv-tech.2023.1.5

Бушуєв С., Бушуєва В., Засуха І. Застосування стохастичних мереж у проєктах цифровізації державного сектору. Вісник Одеського національного морського університету. 2021. 65. C. 159–172. DOI: https://doi.org/10.47049/2226-1893-2021-2-159-172

Бортульов Є.С., Іванов Р.В. Визначення вірогідності реалізації проєкту на основі PERT-методу. Сучасні проблеми моделювання соціально-економічних систем. Матеріали XI міжнародної науково-практичної Інтернет-конференції 11–12 квітня 2019 р : Мультимедійне наук. електрон. вид. Братислава – Харків: ВШЕМ – ХНЕУ ім. С. Кузнеця, 2019. URL: https://mpsesm.org/index.php/mpsesm/mpsesm-xi/paper/view/831

Brewer J.L., Dittman K.C. Methods of IT Project Management. West Lafayette. Purdue University Press. 2023. 555 p.

Dudnyk O. Sokolovska Z. Application of Fuzzy Expert Systems in IT Project Management. Project Management – New Trends and Applications. 2023. 29. DOI: 10.5772/intechopen.102439

Aramesh S., Mousavi S.M., Mohagheghi V. A New Comprehensive Project Scheduling, Monitoring, and Management Framework Based on the Critical Chain Under Interval Type-2 Fuzzy Uncertainty. Iranial Journal of Fuzzy Systems. 2021. 18(1). P. 151–170. DOI: 10.22111/IJFS.2021.5880

Juan Carlos Figueroa-García, Heriberto Román-Flores, Yurilev Chalco-Cano. Type-Reduction of Interval Type-2 Fuzzy Numbers via the Chebyshev Inequality. Fuzzy Sets Systems. 2022. 435 (1). P. 164–180. DOI: https://doi.org/10.1016/j.fss.2021.04.014

References

Mahmoud, A. H. (2019), "Critical Paths in a Fuzzy Construction Project Network", International Journal of Civil Engineering and Technology (IJCIET), 10(1), P. 1313–1321. available at: https://www.researchgate.net/publication/336072792_Critical_Paths_in_a_Fuzzy_Construction_Project_Network

Gajzler, M., Zima, K. (2017), "Evaluation of Planned Construction Projects Using Fuzzy Logic", International Journal of Civil Engineering, 15, P. 641–652. DOI: https://doi.org/10.1007/s40999-017-0177-8

Plebankiewicz, E., Zima, K., Wieczorek, D. (2021), "Modelling of Time, Cost and Risk of Construction with Using Fuzzy Logic", Journal of Civil Engineering and Management, 27(6), P. 412–426. DOI: https://doi.org/10.3846/jcem.2021.15255

Haghighi, M.H., Ashrafi, M., Nazerfard, E. (2022), "A Novel Fuzzy Bayesian Network-Based Approach for the Project Time-Cost-Quality Trade-off Problem", AUT Journal of Modeling and Simulation, 54(2), P. 185–196. DOI: 10.22060/miscj.2023.20752.5266

Abbass, Huda Fadhil, Al-Kanani, Idean Hassan. (2021), "Proposed Ranking Function to Solve the Fuzzy Project Management and Network Problem", Journal of Physics: Conference Series. DOI: 10.1088/1742-6596/1963/1/012071

Akan, E, Bayar, S. (2021), "Interval Type-2 Fuzzy Program Evaluation and Review Technique for Project Management in Shipbuilding", Ships and Offshore Structures, P. 1–19. DOI: 10.1080/17445302.2021.1950350

Figueroa-García, J.C., Hernández-Pérez, G, Ramos-Cuesta, J.S. (2023), "Uncertain Project Network Analysis with Fuzzy-PERT and Interval Type-2 Fuzzy Activity Durations", Heliyon, Volume 9, Issue 4. DOI: https://doi.org/10.1016/j.heliyon.2023.e14833

Mohagheghi, V., Meysam, S., Mousavi, S.M., Vahdani, B. (2021), "Analyzing Project Cash Flow by a New Interval Type-2 Fuzzy Model with an Application to Construction Industry", Neural Computing and Applications, 28, P. 3393–3411. DOI: 10.1007/s00521-016-2235-6

Rodashchuk, H.Yu., Kontseba, S.M., Lishchuk, R.I., Skurtol, S.D. (2023). "Network planning in IT project management", Taurian Scientific Herald. Series: Technical sciences, (1), 42–56. DOI: https://doi.org/10.32851/tnv-tech.2023.1.5

Bushuiev S., Bushuieva V., Zasukha I. (2021). "Application of stochastic networks in public sector digitization projects", Bulletin of Odessa National Maritime University, (65), 159–172. DOI: https://doi.org/10.47049/2226-1893-2021-2-159-172

Bortulov Ye.S., Ivanov R.V. (2019), "Determining the probability of project implementation based on the PERT method", Modern problems of modeling socio-economic systems. Materials of the XI International Scientific and Practical Internet Conference April 11–12, Bratislava – Kharkiv. available at: https://mpsesm.org/index.php/mpsesm/mpsesm-xi/paper/view/831

Brewer, J.L., Dittman, K.C. (2023), Methods of IT Project Management, West Lafayette. Purdue University Press, 555 р.

Dudnyk, O. Sokolovska, Z. (2023), "Application of Fuzzy Expert Systems in IT Project Management", Project Management – New Trends and Applications, 29. DOI: 10.5772/intechopen.102439

Aramesh, S., Mousavi, S.M., Mohagheghi, V. (2021), "A New Comprehensive Project Scheduling, Monitoring, and Management Framework Based on the Critical Chain Under Interval Type-2 Fuzzy Uncertainty", Iranial Journal of Fuzzy Systems, 18 (1), P. 151–170. DOI: 10.22111/IJFS.2021.5880

Figueroa-García, J.C., Román-Flores, H., Chalco-Cano, Y. (2022), "Type-Reduction of Interval Type-2 Fuzzy Numbers via the Chebyshev Inequality", Fuzzy Sets Systems, 435 (1), P. 164–180. DOI: https://doi.org/10.1016/j.fss.2021.04.014

Published

2024-07-02

How to Cite

Matviienko, O., & Zakutnii, S. (2024). Fuzzy logic in the problems of determining the economic parameters of project implementation. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (1 (27), 96–108. https://doi.org/10.30837/ITSSI.2024.27.096