Choosing strategies for deployment and ensuring the reliability of a UAV swarm to support communications in destruction conditions

Authors

DOI:

https://doi.org/10.30837/2522-9818.2024.3.091

Keywords:

UAV; LiFi; flying networks; choice algorithms; reliability; strtategy efficiency

Abstract

The subject matter of the article is the system of communication networks of UAVs (flying networks, FNs), which use LiFi technology for data transmission from the source to the receiver in conditions of physical obstacles and cyber threats, as well as deployment and reliability assurance strategies (DRAS) of FNs. The goal of the work is to develop criteria and algorithms for choosing DRAS of FNs that provide the necessary level of reliability and efficiency under given constraints. The following tasks were solved in the article: systematization of deployment strategies and ensuring the reliability of the flying network; formulation of principles and development of an algorithm for choosing the optimal deployment strategy and ensuring the reliability of FNs; providing recommendations on choosing the optimal deployment strategies and ensuring the reliability of the flying network. The following methods are used: system analysis for choosing the optimal DRAS; theory of reliability and system efficiency. The following results were obtained: the classifier of FNs deployment strategies was expanded due to additional features of repair and maintenance, as well as the presence of cyber attacks; the criteria for choosing deployment strategies and ensuring the reliability of FNs are formulated; an algorithm for choosing the optimal deployment strategy and ensuring the reliability of FNs was developed; the analysis is carried out and an example of the application of the developed algorithms is given to illustrate the step-by-step procedure for choosing a strategy, which is accompanied by calculations of reliability indicators. Conclusions: the proposed sets, criteria, and algorithm for choosing deployment and reliability assurance strategies of FNs enable the substantiation of a set of parameters and planning of the implementation of the optimal (according to the defined criterion) policy for the introduction of an automatic communication support system at critical infrastructure objects under conditions of destruction and cyber influence, as well as increase efficiency (minimize cost) of the use of flying networks.

Author Biographies

Dmytro Terenyk, National Aerospace University "Kharkiv Aviation Institute" named after M. E. Zhukovsky

Master of Science in Computer Engineering, PhD Student at the Department of Computer Systems, Networks, and Cybersecurity

Vyacheslav Kharchenko, National Aerospace University "Kharkiv Aviation Institute" named after M. E. Zhukovsky

Doctor of Sciences (Engineering), Professor, Head at the Department of Computer Systems, Networks, and Cybersecurity

References

Список літератури

A review of flying ad hoc networks: key characteristics, applications, and wireless technologies / F. Pasandideh et al. Remote Sensing. 2022. Vol. 14, No. 18. 4459 р. DOI: 10.3390/rs14184459

Non-terrestrial networks with UAVs: A projection on flying ad-hoc networks / M. Nemati et al. Drones. 2022. Vol. 6, No. 11. 334 р. DOI: 10.3390/drones6110334

Petritoli E., Leccese F., Ciani L. Reliability and Maintenance Analysis of Unmanned Aerial Vehicles. Sensors. 2018. Vol. 18, No. 9. 3171 р. DOI: 10.3390/s18093171

Modeling and analysis of self-organizing UAV-assisted mobile networks with dynamic on-demand deployment / D. Horvath et al. Entropy. 2019. Vol. 21, No. 11. 1077 р. DOI: 10.3390/e21111077

Tian Z., Haas Z. J., Shinde S. Routing in Solar-Powered UAV Delivery System. Drones. 2022. Vol. 6, No. 10. 282 р. DOI: 10.3390/drones6100282

Lee G., Saad W., Bennis M. Online Optimization for UAV-Assisted Distributed Fog Computing in Smart Factories of Industry 4.0. GLOBECOM 2018 - 2018 IEEE global communications conference, Abu Dhabi, United Arab Emirates, 9–13 December 2018. DOI: 10.1109/glocom.2018.8647441

Ruban I., Lebediev V. Method for determining the rational number of uav flotilla taking into account the reliability of the aircraft. Innovative technologies and scientific solutions for industries. 2023. No. 1 (23). P. 108–114. DOI: 10.30837/itssi.2023.23.108

Deep Neural Network for Autonomous UAV Navigation in Indoor Corridor Environments / R. P. Padhy et al. Procedia Computer Science. 2018. Vol. 133. P. 643–650. DOI: 10.1016/j.procs.2018.07.099

Bachrach A., He R., Roy N. Autonomous Flight in Unknown Indoor Environments. International Journal of Micro Air Vehicles. 2009. Vol. 1, No. 4. P. 217–228. DOI: 10.1260/175682909790291492

Bills C., Chen J., Saxena A. Autonomous MAV flight in indoor environments using single image perspective cues. 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011. DOI: 10.1109/icra.2011.5980136

Duong T. Q., Nguyen L. D., Nguyen L. K. Practical optimisation of path planning and completion time of data collection for uav-enabled disaster communications. 2019 15th international wireless communications and mobile computing conference (IWCMC), Tangier, Morocco, 24–28 June. 2019. DOI: 10.1109/iwcmc.2019.8766511.

Robust UAV mission planning / L. Evers et al. Annals of Operations Research. 2012. Vol. 222, No. 1. P. 293–315. DOI: 10.1007/s10479-012-1261-8

Alwateer M., Loke S. W., Rahayu W. Drone services: An investigation via prototyping and simulation. 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018. DOI: 10.1109/wf-iot.2018.8355153

Autonomous Decision-Making Method for Combat Mission of UAV based on Deep Reinforcement Learning / J. Xu et al. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China, 20–22 December 2019. DOI: 10.1109/iaeac47372.2019.8998066

Deployment of a UAV swarm-based LiFi network in the obstacle-ridden environment: algorithms of finding the path for UAV placement / K. Leichenko et al. Radioelectronic and Computer Systems. 2024. Vol. 2024, No. 1. P. 176–195. DOI: 10.32620/reks.2024.1.14

Лейченко К. М., Фесенко Г. В. Програмний засіб підтримки планування розгортання LіFі мережі на основі БПЛА для забезпечення передачі даних в умовах руйнувань. Системи управління, навігації та зв’язку. Збірник наукових праць. 2024. Т. 1, № 75. С. 193–200. DOI: 10.26906/SUNZ.2024.1.193

Лейченко К. М., Фесенко Г. В., Харченко В. С. Стратегії розгортання та методи забезпечення надійності рою БПЛА для утворення LiFi мережі. Вимірювальна та обчислювальна техніка в технологічних процесах. 2024. № 1. С. 21–31. DOI: 10.31891/2219-9365-2024-77-3

Тереник Д., Харченко В. С. Класифікація стратегій забезпечення надійності літаючої мережі для забезпечення комунікацій в умовах руйнувань. Вимірювальна та обчислювальна техніка в технологічних процесах. 2024. № 2. С. 357–370. DOI: 10.31891/2219-9365-2024-78-41

Тереник Д., Кучук Г. A. Порівняння SQL та NoSQL баз даних на прикладі проектування аффілейт репорт систем. Радіоелектронні і комп'ютерні системи. 2020. № 1. С. 83–89. DOI: 10.32620/reks.2020.1.08

Gal Y., Zarrouk D. Task-Based Motion Planning Using Optimal Redundancy for a Minimally Actuated Robotic Arm. Applied Sciences. 2022. Vol. 12, No. 19. P. 9526. DOI: 10.3390/app12199526

Stochastic Modeling for Assessing the Reliability and Availability of Drone-Based Surveillance Systems / L. Lins et al. 2024 IEEE International Systems Conference (SysCon), Montreal, QC, Canada, 15–18 April 2024. DOI: 10.1109/syscon61195.2024.10553470

References

Pasandideh, F., da Costa, J. P. J., Kunst, R., Islam, N., Hardjawana, W., Pignaton de Freitas, E. (2022), "A review of flying ad hoc networks: key characteristics, applications, and wireless technologies". Remote sensing. No. 14(18), 4459 р. DOI: 10.3390/rs14184459

Nemati, M., Al Homssi, B., Krishnan, S., Park, J., Loke, S. W., Choi, J. (2022), "Non-terrestrial networks with uavs: a projection on flying ad-hoc networks". Drones. 6(11), 334 р. DOI: 10.3390/drones6110334

Petritoli, E., Leccese, F., Ciani, L. (2018), "Reliability and maintenance analysis of unmanned aerial vehicles". Sensors. 18(9), 3171 р. DOI: 10.3390/s18093171

Horvath, D., Gazda, J., Slapak, E., Maksymyuk, T. (2019), "Modeling and analysis of self-organizing uav-assisted mobile networks with dynamic on-demand deployment". Entropy. 21(11), 1077 р. DOI: 10.3390/e21111077

Tian, Z., Haas, Z. J., Shinde, S. (2022), "Routing in solar-powered UAV delivery system". Drones. 6(10), 282 р. DOI: 10.3390/drones6100282

Lee, G., Saad, W., Bennis, M. (2018), "Online optimization for uav-assisted distributed fog computing in smart factories of industry 4.0". GLOBECOM 2018 - 2018 IEEE global communications conference, 9–13 December 2018, Abu Dhabi, United Arab Emirates. IEEE. DOI: 10.1109/glocom.2018.8647441

Ruban, I., Lebediev, V. (2023), "Method for determining the rational number of uav flotilla taking into account the reliability of the aircraft". Innovative technologies and scientific solutions for industries. 1 (23), Р. 108–114. DOI: 10.30837/itssi.2023.23.108

Padhy, R. P., Verma, S., Ahmad, S., Choudhury, S. K., Sa, P. K. (2018), "Deep neural network for autonomous UAV navigation in indoor corridor environments". Procedia computer science. 133, Р. 643–650. DOI: 10.1016/j.procs.2018.07.099

Bachrach, A., He, R., Roy, N. (2009), "Autonomous flight in unknown indoor environments". International journal of micro air vehicles. 1(4), Р. 217–228. DOI: 10.1260/175682909790291492

Bills, C., Chen, J., Saxena, A. (2011), "Autonomous MAV flight in indoor environments using single image perspective cues". 2011 IEEE international conference on robotics and automation (ICRA), 9–13 May 2011, Shanghai, China. IEEE. DOI: 10.1109/icra.2011.5980136

Duong, T. Q., Nguyen, L. D., Nguyen, L. K. (2019), "Practical optimisation of path planning and completion time of data collection for uav-enabled disaster communications. 2019 15th international wireless communications and mobile computing conference (IWCMC), 24–28 June 2019, Tangier, Morocco. IEEE. DOI: 10.1109/iwcmc.2019.8766511

Evers, L., Dollevoet, T., Barros, A. I., Monsuur, H. (2012), "Robust UAV mission planning". Annals of operations research. 222(1), Р. 293–315. DOI: 10.1007/s10479-012-1261-8

Alwateer, M., Loke, S. W., Rahayu, W. (2018), "Drone services: an investigation via prototyping and simulation". 2018 IEEE 4th world forum on internet of things (wf-iot), 5–8 February 2018, Singapore. IEEE. DOI: 10.1109/wf-iot.2018.8355153

Xu, J., Guo, Q., Xiao, L., Li, Z., Zhang, G. (2019), "Autonomous decision-making method for combat mission of UAV based on deep reinforcement learning". 2019 IEEE 4th advanced information technology, electronic and automation control conference (IAEAC), 20–22 December 2019, Chengdu, China. IEEE. DOI: 10.1109/iaeac47372.2019.8998066

Leichenko, K., Fesenko, H. Kharchenko, V. Illiashenko, O. (2024), "Deployment of a UAV swarm-based LiFi network in the obstacle-ridden environment: algorithms of finding the path for UAV placement". Radioelectronic and computer systems. 2024(1), Р. 176–195. DOI: 10.32620/reks.2024.1.14

Leichenko, K., Fesenko, H. (2024), "A software tool to support the planning of the deployment of a lifi network based on BPL to ensure data transmission in conditions of destruction". [Prohramnyi zasib pidtrymky planuvannia rozghortannia lifi merezhi na osnovi bpla dlia zabezpechennia peredachi danykh v umovakh ruinuvan]. Control, navigation and communication systems. Collection of scientific papers. 1(75), Р. 193–200. DOI: 10.26906/sunz.2024.1.193

Leichenko, K., Fesenko, H., Kharchenko, V. (2024), "Deployment strategies and methods for ensuring the reliability of a swarm of UAVs for the formation of a lifi network". [Stratehiji rozhortannja ta metody zabezpečennja nadijnosty roju bpla dlja utvorennja lifi mereži]. Measuring and computing devices in technological processes. (1), Р. 21–31. DOI: 10.31891/2219-9365-2024-77-3

Terenik, D., Kharchenko, V. (2024), "Classification of strategies for ensuring the reliability of the flying network for ensuring communications in conditions of destruction". [Klasyfikacija stratehij zabezpečennja nadijnosti litajučoji mereži dlja zabezpečennja komunikacij v umovax rujnuvanʹ]. Measuring and computing devices in technological processes. No. 2, Р. 357–370. DOI: 10.31891/2219-9365-2024-78-35

Terenik, D., Kuchuk, H. (2020), "Comparison of sql and nosql databases on the example of designing affiliate report systems". [Porivnjannja sql i nosql baz danyx na prykladi proektuvannja affilejt report system]. Radioelectronic and computer systems. (1), Р. 83–89. DOI: 10.32620/reks.2020.1.08

Gal, Y. and Zarrouk, D., (2022), "Task-Based motion planning using optimal redundancy for a minimally actuated robotic arm". Applied Sciences. 12(19), 9526 р. DOI: 10.3390/app12199526

Lins, L., Nascimento, E., Dantas, J., Araujo, J. and Maciel, P. (2024), "Stochastic modeling for assessing the reliability and availability of drone-based surveillance systems". IEEE international systems conference (syscon), 5–18 April, Montreal, QC, Canada. IEEE, Р. 1–8. DOI: 10.1109/syscon61195.2024.10553470

Published

2024-09-30

How to Cite

Terenyk, D., & Kharchenko, V. (2024). Choosing strategies for deployment and ensuring the reliability of a UAV swarm to support communications in destruction conditions. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (3 (29), 91–103. https://doi.org/10.30837/2522-9818.2024.3.091