Choosing strategies for deployment and ensuring the reliability of a UAV swarm to support communications in destruction conditions
DOI:
https://doi.org/10.30837/2522-9818.2024.3.091Keywords:
UAV; LiFi; flying networks; choice algorithms; reliability; strtategy efficiencyAbstract
The subject matter of the article is the system of communication networks of UAVs (flying networks, FNs), which use LiFi technology for data transmission from the source to the receiver in conditions of physical obstacles and cyber threats, as well as deployment and reliability assurance strategies (DRAS) of FNs. The goal of the work is to develop criteria and algorithms for choosing DRAS of FNs that provide the necessary level of reliability and efficiency under given constraints. The following tasks were solved in the article: systematization of deployment strategies and ensuring the reliability of the flying network; formulation of principles and development of an algorithm for choosing the optimal deployment strategy and ensuring the reliability of FNs; providing recommendations on choosing the optimal deployment strategies and ensuring the reliability of the flying network. The following methods are used: system analysis for choosing the optimal DRAS; theory of reliability and system efficiency. The following results were obtained: the classifier of FNs deployment strategies was expanded due to additional features of repair and maintenance, as well as the presence of cyber attacks; the criteria for choosing deployment strategies and ensuring the reliability of FNs are formulated; an algorithm for choosing the optimal deployment strategy and ensuring the reliability of FNs was developed; the analysis is carried out and an example of the application of the developed algorithms is given to illustrate the step-by-step procedure for choosing a strategy, which is accompanied by calculations of reliability indicators. Conclusions: the proposed sets, criteria, and algorithm for choosing deployment and reliability assurance strategies of FNs enable the substantiation of a set of parameters and planning of the implementation of the optimal (according to the defined criterion) policy for the introduction of an automatic communication support system at critical infrastructure objects under conditions of destruction and cyber influence, as well as increase efficiency (minimize cost) of the use of flying networks.
References
Список літератури
A review of flying ad hoc networks: key characteristics, applications, and wireless technologies / F. Pasandideh et al. Remote Sensing. 2022. Vol. 14, No. 18. 4459 р. DOI: 10.3390/rs14184459
Non-terrestrial networks with UAVs: A projection on flying ad-hoc networks / M. Nemati et al. Drones. 2022. Vol. 6, No. 11. 334 р. DOI: 10.3390/drones6110334
Petritoli E., Leccese F., Ciani L. Reliability and Maintenance Analysis of Unmanned Aerial Vehicles. Sensors. 2018. Vol. 18, No. 9. 3171 р. DOI: 10.3390/s18093171
Modeling and analysis of self-organizing UAV-assisted mobile networks with dynamic on-demand deployment / D. Horvath et al. Entropy. 2019. Vol. 21, No. 11. 1077 р. DOI: 10.3390/e21111077
Tian Z., Haas Z. J., Shinde S. Routing in Solar-Powered UAV Delivery System. Drones. 2022. Vol. 6, No. 10. 282 р. DOI: 10.3390/drones6100282
Lee G., Saad W., Bennis M. Online Optimization for UAV-Assisted Distributed Fog Computing in Smart Factories of Industry 4.0. GLOBECOM 2018 - 2018 IEEE global communications conference, Abu Dhabi, United Arab Emirates, 9–13 December 2018. DOI: 10.1109/glocom.2018.8647441
Ruban I., Lebediev V. Method for determining the rational number of uav flotilla taking into account the reliability of the aircraft. Innovative technologies and scientific solutions for industries. 2023. No. 1 (23). P. 108–114. DOI: 10.30837/itssi.2023.23.108
Deep Neural Network for Autonomous UAV Navigation in Indoor Corridor Environments / R. P. Padhy et al. Procedia Computer Science. 2018. Vol. 133. P. 643–650. DOI: 10.1016/j.procs.2018.07.099
Bachrach A., He R., Roy N. Autonomous Flight in Unknown Indoor Environments. International Journal of Micro Air Vehicles. 2009. Vol. 1, No. 4. P. 217–228. DOI: 10.1260/175682909790291492
Bills C., Chen J., Saxena A. Autonomous MAV flight in indoor environments using single image perspective cues. 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011. DOI: 10.1109/icra.2011.5980136
Duong T. Q., Nguyen L. D., Nguyen L. K. Practical optimisation of path planning and completion time of data collection for uav-enabled disaster communications. 2019 15th international wireless communications and mobile computing conference (IWCMC), Tangier, Morocco, 24–28 June. 2019. DOI: 10.1109/iwcmc.2019.8766511.
Robust UAV mission planning / L. Evers et al. Annals of Operations Research. 2012. Vol. 222, No. 1. P. 293–315. DOI: 10.1007/s10479-012-1261-8
Alwateer M., Loke S. W., Rahayu W. Drone services: An investigation via prototyping and simulation. 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018. DOI: 10.1109/wf-iot.2018.8355153
Autonomous Decision-Making Method for Combat Mission of UAV based on Deep Reinforcement Learning / J. Xu et al. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China, 20–22 December 2019. DOI: 10.1109/iaeac47372.2019.8998066
Deployment of a UAV swarm-based LiFi network in the obstacle-ridden environment: algorithms of finding the path for UAV placement / K. Leichenko et al. Radioelectronic and Computer Systems. 2024. Vol. 2024, No. 1. P. 176–195. DOI: 10.32620/reks.2024.1.14
Лейченко К. М., Фесенко Г. В. Програмний засіб підтримки планування розгортання LіFі мережі на основі БПЛА для забезпечення передачі даних в умовах руйнувань. Системи управління, навігації та зв’язку. Збірник наукових праць. 2024. Т. 1, № 75. С. 193–200. DOI: 10.26906/SUNZ.2024.1.193
Лейченко К. М., Фесенко Г. В., Харченко В. С. Стратегії розгортання та методи забезпечення надійності рою БПЛА для утворення LiFi мережі. Вимірювальна та обчислювальна техніка в технологічних процесах. 2024. № 1. С. 21–31. DOI: 10.31891/2219-9365-2024-77-3
Тереник Д., Харченко В. С. Класифікація стратегій забезпечення надійності літаючої мережі для забезпечення комунікацій в умовах руйнувань. Вимірювальна та обчислювальна техніка в технологічних процесах. 2024. № 2. С. 357–370. DOI: 10.31891/2219-9365-2024-78-41
Тереник Д., Кучук Г. A. Порівняння SQL та NoSQL баз даних на прикладі проектування аффілейт репорт систем. Радіоелектронні і комп'ютерні системи. 2020. № 1. С. 83–89. DOI: 10.32620/reks.2020.1.08
Gal Y., Zarrouk D. Task-Based Motion Planning Using Optimal Redundancy for a Minimally Actuated Robotic Arm. Applied Sciences. 2022. Vol. 12, No. 19. P. 9526. DOI: 10.3390/app12199526
Stochastic Modeling for Assessing the Reliability and Availability of Drone-Based Surveillance Systems / L. Lins et al. 2024 IEEE International Systems Conference (SysCon), Montreal, QC, Canada, 15–18 April 2024. DOI: 10.1109/syscon61195.2024.10553470
References
Pasandideh, F., da Costa, J. P. J., Kunst, R., Islam, N., Hardjawana, W., Pignaton de Freitas, E. (2022), "A review of flying ad hoc networks: key characteristics, applications, and wireless technologies". Remote sensing. No. 14(18), 4459 р. DOI: 10.3390/rs14184459
Nemati, M., Al Homssi, B., Krishnan, S., Park, J., Loke, S. W., Choi, J. (2022), "Non-terrestrial networks with uavs: a projection on flying ad-hoc networks". Drones. 6(11), 334 р. DOI: 10.3390/drones6110334
Petritoli, E., Leccese, F., Ciani, L. (2018), "Reliability and maintenance analysis of unmanned aerial vehicles". Sensors. 18(9), 3171 р. DOI: 10.3390/s18093171
Horvath, D., Gazda, J., Slapak, E., Maksymyuk, T. (2019), "Modeling and analysis of self-organizing uav-assisted mobile networks with dynamic on-demand deployment". Entropy. 21(11), 1077 р. DOI: 10.3390/e21111077
Tian, Z., Haas, Z. J., Shinde, S. (2022), "Routing in solar-powered UAV delivery system". Drones. 6(10), 282 р. DOI: 10.3390/drones6100282
Lee, G., Saad, W., Bennis, M. (2018), "Online optimization for uav-assisted distributed fog computing in smart factories of industry 4.0". GLOBECOM 2018 - 2018 IEEE global communications conference, 9–13 December 2018, Abu Dhabi, United Arab Emirates. IEEE. DOI: 10.1109/glocom.2018.8647441
Ruban, I., Lebediev, V. (2023), "Method for determining the rational number of uav flotilla taking into account the reliability of the aircraft". Innovative technologies and scientific solutions for industries. 1 (23), Р. 108–114. DOI: 10.30837/itssi.2023.23.108
Padhy, R. P., Verma, S., Ahmad, S., Choudhury, S. K., Sa, P. K. (2018), "Deep neural network for autonomous UAV navigation in indoor corridor environments". Procedia computer science. 133, Р. 643–650. DOI: 10.1016/j.procs.2018.07.099
Bachrach, A., He, R., Roy, N. (2009), "Autonomous flight in unknown indoor environments". International journal of micro air vehicles. 1(4), Р. 217–228. DOI: 10.1260/175682909790291492
Bills, C., Chen, J., Saxena, A. (2011), "Autonomous MAV flight in indoor environments using single image perspective cues". 2011 IEEE international conference on robotics and automation (ICRA), 9–13 May 2011, Shanghai, China. IEEE. DOI: 10.1109/icra.2011.5980136
Duong, T. Q., Nguyen, L. D., Nguyen, L. K. (2019), "Practical optimisation of path planning and completion time of data collection for uav-enabled disaster communications. 2019 15th international wireless communications and mobile computing conference (IWCMC), 24–28 June 2019, Tangier, Morocco. IEEE. DOI: 10.1109/iwcmc.2019.8766511
Evers, L., Dollevoet, T., Barros, A. I., Monsuur, H. (2012), "Robust UAV mission planning". Annals of operations research. 222(1), Р. 293–315. DOI: 10.1007/s10479-012-1261-8
Alwateer, M., Loke, S. W., Rahayu, W. (2018), "Drone services: an investigation via prototyping and simulation". 2018 IEEE 4th world forum on internet of things (wf-iot), 5–8 February 2018, Singapore. IEEE. DOI: 10.1109/wf-iot.2018.8355153
Xu, J., Guo, Q., Xiao, L., Li, Z., Zhang, G. (2019), "Autonomous decision-making method for combat mission of UAV based on deep reinforcement learning". 2019 IEEE 4th advanced information technology, electronic and automation control conference (IAEAC), 20–22 December 2019, Chengdu, China. IEEE. DOI: 10.1109/iaeac47372.2019.8998066
Leichenko, K., Fesenko, H. Kharchenko, V. Illiashenko, O. (2024), "Deployment of a UAV swarm-based LiFi network in the obstacle-ridden environment: algorithms of finding the path for UAV placement". Radioelectronic and computer systems. 2024(1), Р. 176–195. DOI: 10.32620/reks.2024.1.14
Leichenko, K., Fesenko, H. (2024), "A software tool to support the planning of the deployment of a lifi network based on BPL to ensure data transmission in conditions of destruction". [Prohramnyi zasib pidtrymky planuvannia rozghortannia lifi merezhi na osnovi bpla dlia zabezpechennia peredachi danykh v umovakh ruinuvan]. Control, navigation and communication systems. Collection of scientific papers. 1(75), Р. 193–200. DOI: 10.26906/sunz.2024.1.193
Leichenko, K., Fesenko, H., Kharchenko, V. (2024), "Deployment strategies and methods for ensuring the reliability of a swarm of UAVs for the formation of a lifi network". [Stratehiji rozhortannja ta metody zabezpečennja nadijnosty roju bpla dlja utvorennja lifi mereži]. Measuring and computing devices in technological processes. (1), Р. 21–31. DOI: 10.31891/2219-9365-2024-77-3
Terenik, D., Kharchenko, V. (2024), "Classification of strategies for ensuring the reliability of the flying network for ensuring communications in conditions of destruction". [Klasyfikacija stratehij zabezpečennja nadijnosti litajučoji mereži dlja zabezpečennja komunikacij v umovax rujnuvanʹ]. Measuring and computing devices in technological processes. No. 2, Р. 357–370. DOI: 10.31891/2219-9365-2024-78-35
Terenik, D., Kuchuk, H. (2020), "Comparison of sql and nosql databases on the example of designing affiliate report systems". [Porivnjannja sql i nosql baz danyx na prykladi proektuvannja affilejt report system]. Radioelectronic and computer systems. (1), Р. 83–89. DOI: 10.32620/reks.2020.1.08
Gal, Y. and Zarrouk, D., (2022), "Task-Based motion planning using optimal redundancy for a minimally actuated robotic arm". Applied Sciences. 12(19), 9526 р. DOI: 10.3390/app12199526
Lins, L., Nascimento, E., Dantas, J., Araujo, J. and Maciel, P. (2024), "Stochastic modeling for assessing the reliability and availability of drone-based surveillance systems". IEEE international systems conference (syscon), 5–18 April, Montreal, QC, Canada. IEEE, Р. 1–8. DOI: 10.1109/syscon61195.2024.10553470
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Our journal abides by the Creative Commons copyright rights and permissions for open access journals.
Authors who publish with this journal agree to the following terms:
Authors hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-commercial and non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their published work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.