Trust-based routing methodology in uav swarm networks based on traffic analysis and anomaly detection
DOI:
https://doi.org/10.30837/2522-9818.2025.2.111Keywords:
UAV swarm network, FANET, AODV, Black Hole attack, trust, NS-3 simulation, routing security, attack mitigation, NetDevice, malicious node detection.Abstract
Subject matter. the subject of the research is the process of ensuring secure routing and data exchange among unmanned aerial vehicles (UAVs) within swarm networks under cyber threat conditions, particularly Black Hole-type attacks. Goal. The purpose of this study is to develop and simulate a secure information transmission mechanism for UAV swarm networks that takes into account node trust levels and enables the identification of malicious participants based on behavioral analysis. The study also aims to establish a methodology for secure and energy-efficient routing in FANETs based on blockchain technologies and trust evaluation models, ensuring cyber resilience, data integrity, and minimal resource usage. Tasks the following objectives were addressed during the research. Conduct a comprehensive analysis of vulnerabilities in traditional routing protocols used in FANETs to identify potential threats to information security: justify the use of trust-based mechanisms to improve routing resilience against internal attacks; implement a Black Hole attack model within the NS-3 simulation environment to analyze its impact on swarm network performance; develop a mechanism for counting forwarded packets per node as a foundation for a trust evaluation system among agents; visualize simulation results to support analysis and comparison of proposed methods. Methods: the research employs simulation modeling of FANETs in NS-3.36, using the RandomWaypoint mobility model and the AODV routing protocol. Methods include statistical analysis of packet forwarding metrics and graphical representation of trust metrics. The developed code simulates the Black Hole attack by manipulating the NetDevice layer and logs all transmitted packets in CSV format for post-processing. A combination of simulation tools, analytical analysis, and visualization techniques was applied to evaluate system performance under dynamic conditions. Results. The results demonstrate the effectiveness of the proposed approach in detecting malicious nodes within the swarm network. Trust metrics revealed anomalous attacker behavior, such as the absence of packet forwarding, distinguishing them from normal nodes. This allows for timely identification and exclusion of threats from the routing process. Graphical visualization clearly displays node activity distribution, facilitating result interpretation without the need for in-depth log analysis. Conclusions. The proposed trust-based mechanism, combined with node activity analysis, effectively protects FANET networks against Black Hole attacks. Future improvements may include integrating more advanced trust assessment methods, such as multifactor analysis, blockchain, or machine learning. Developing adaptive routing algorithms capable of autonomously isolating or excluding suspicious nodes is also recommended
References
Список літератури
Liu E., Effiok E., Hitchcock J. Survey on health care applications in 5g networks. IET Communications, Р. 1073–1080. 2020. DOI: doi.org/10.1049/iet-com.2019.0813
Wang J., Liu Y., Niu S., Song H. Lightweight blockchain-assisted secure routing of swarm UAS networking. Computer Communications. 2020. Vol. 157. P. 66–75. DOI: https://doi.org/10.1016/j.comcom.2020.09.035
Alshammari H., Niazi M. Mitigating Black Hole and Sybil Attacks in UAV Swarm Networks using Blockchain and Fuzzy Logic. Sensors. 2023. Vol. 23, Issue 3. Article 625. DOI: https://doi.org/10.3390/s23030625
Gupta R. et al. Blockchain‐assisted secure UAV communication in 6G environment: Architecture, opportunities, and challenges. IET communications. 2021. Vol. 15. №. 10. Р. 1352-1367. DOI: 10.1049/cmu2.12113
Rosati S., Kruzelecki K., Heitz G., Floreano D., Rimoldi B. Dynamic Routing for Flying Ad Hoc Networks. IEEE Transactions on Vehicular Technology. 2016. Vol. 65, Issue 3. P. 1690–1700. DOI: https://doi.org/10.1109/TVT.2015.2415417
Akkaya K., Guvenc I., Aygun R., Pala N., Kadri A. Routing in unmanned aerial ad hoc networks: A survey. Ad Hoc Networks. 2020. Vol. 92. Article 101778. DOI: https://doi.org/10.1016/j.adhoc.2019.101778
Wang W.; Lv M.; Ru L.; Lu B.; Hu S.; Chang X. (2022). Multi-UAV Unbalanced Targets Coordinated Dynamic Task Allocation in Phases. Aerospace, 9, 491 р. 2022. DOI: https://doi.org/10.3390/aerospace9090491
Krytskyi D., Karatanov O., Pohudina O., Shevel V., Bykov A., Pyvovar M., Plastun T. Information Technology for Determining the Flight Performance of a Paraglider Wing. In Information Technologies in the Design of Aerospace Engineering Р. 1-42. Cham: Springer Nature Switzerland. 2023. DOI: https://doi.org/10.1007/978-3-031-43579-9_1
Zhou X. et al. Towards secure and resilient unmanned aerial vehicles swarm network based on blockchain. IET Blockchain. 2024. Vol. 4. Р. 483-493. DOI: https://doi.org/10.1049/blc2.12050
Li Z. et al. A secure and efficient UAV network defense strategy: Convergence of blockchain and deep learning //Computer Standards & Interfaces. 2024. Vol. 90. 103844 р. DOI: https://doi.org/10.1016/j.csi.2024.103844
Mershad K. PROACT: Parallel multi-miner proof of accumulated trust protocol for Internet of Drones. Vehicular Communications. 2022. Vol. 36. 100495 р. DOI: https://doi.org/10.1016/j.vehcom.2022.100495
Hafeez S. et al. Beta-UAV: blockchain-based efficient authentication for secure UAV communication. Cryptography and Security. 2024. DOI: https://doi.org/10.48550/arXiv.2402.15817
Євдокименко М. О. Теоретичні основи відмовостійкої маршрутизації в телекомунікаційних мережах: дис. д-ра техн. наук: 05.12.02. М. О. Євдокименко. Харк. нац. ун-т радіоелектроніки, 2020.
Ясінчук В. І. Багатошляхова маршрутизація на основі алгоритмів мурашкових колоній 2020. URL: https://dspace.wunu.edu.ua/bitstream/316497/1510/1/Yasinchuk%20V.I.%2C%20KSMzm-51.pdf
Krytskyi, D., Karatanov, O., Pohudina, O., Shevel, V., Bykov, A., Pyvovar, M., Plastun, T. Information Technology for Determining the Flight Performance of a Paraglider Wing. In Information Technologies in the Design of Aerospace Engineering. Cham: Springer Nature Switzerland. Р. 1-42. 2024. DOI: https://doi.org/10.1007/978-3-031-43579-9_1
Бінько І. В., Шевель В. В., Биков А. М., Крицький Д. М. Аналіз децентралізованої моделі управління дронів і розрахунок траєкторії перехоплення. Сучасний стан наукових досліджень та технологій в промисловості. 2024. № 2 (28). С. 33–47. DOI: https://doi.org/10.30837/2522-9818.2024.2.033
Єна М. Контроль міської мобільності БПЛА: ройовий інтелект і уникнення зіткнень. Сучасний стан наукових досліджень і технологій в промисловості. 2024. № 4. С. 210–218. DOI: 10.30837/2522-9818.2024.4.059
Тереник Д., Харченко В. Вибір стратегій розгортання і забезпечення надійності рою БПЛА для підтримки комунікацій в умовах руйнувань. Сучасний стан наукових досліджень і технологій в промисловості. 2024. № 3. С. 155–162. DOI: 10.30837/2522-9818.2024.3.091
References
Liu, E., Effiok, E., Hitchcock, J. (2020), "Survey on health care applications in 5G networks", IET Communications, Vol. 14, Р. 1073–1080. DOI: https://doi.org/10.1049/iet-com.2019.0813
Wang, J., Liu, Y., Niu, S., Song, H. (2020), "Lightweight blockchain-assisted secure routing of swarm UAS networking", Computer Communications, Vol. 157, Р. 66–75. DOI: https://doi.org/10.1016/j.comcom.2020.09.035
Alshammari, H., Niazi, M. (2023), "Mitigating Black Hole and Sybil Attacks in UAV Swarm Networks using Blockchain and Fuzzy Logic", Sensors, Vol. 23, No. 3, Article 625. DOI: https://doi.org/10.3390/s23030625
Gupta R., Nair A., Tanwar S., Kumar N. (2021), Blockchain-assisted secure UAV communication in 6G environment: Architecture, opportunities, and challenges. IET Communications, Vol. 15. №. 10. Р. 1352-1367.DOI: 10.1049/cmu2.12113
Rosati, S., Kruzelecki, K., Heitz, G., Floreano, D., Rimoldi, B. (2016), "Dynamic Routing for Flying Ad Hoc Networks", IEEE Transactions on Vehicular Technology, Vol. 65, No. 3, Р. 1690–1700. DOI: https://doi.org/10.1109/TVT.2015.2415417
Akkaya, K., Guvenc, I., Aygun, R., Pala, N., Kadri, A. (2020), "Routing in unmanned aerial ad hoc networks: A survey". Ad Hoc Networks. Vol. 92, Article 101778. DOI: https://doi.org/10.1016/j.adhoc.2019.101778.
Wang, W., Lv, M., Ru, L., Lu, B., Hu, S., Chang, X. (2022), "Multi-UAV Unbalanced Targets Coordinated Dynamic Task Allocation in Phases", Aerospace, Vol. 9, Article 491. DOI: https://doi.org/10.3390/aerospace9090491
Krytskyi, D., Karatanov, O., Pohudina, O., Shevel, V., Bykov, A., Pyvovar, M., Plastun, T. (2024), "Information Technology for Determining the Flight Performance of a Paraglider Wing". Information Technologies in the Design of Aerospace Engineering, Springer Nature Switzerland, Р. 1–42. DOI: https://doi.org/10.1007/978-3-031-43579-9_1
Zhou, X., Chen, H., Liu, J., He, Y., Wu, H. (2024), "Towards secure and resilient unmanned aerial vehicles swarm network based on blockchain", IET Blockchain, Vol. 4, Р. 483–493. DOI: https://doi.org/10.1049/blc2.12050
Li, Z., Chen, H., Sun, L., Wu, J., Li, Q. (2024), "A secure and efficient UAV network defense strategy: Convergence of blockchain and deep learning", Computer Standards & Interfaces, Vol. 90, Article 103844. DOI: https://doi.org/10.1016/j.csi.2024.103844
Mershad, K. (2022), "PROACT: Parallel multi-miner proof of accumulated trust protocol for Internet of Drones", Vehicular Communications, Vol. 36, Article 100495. DOI: https://doi.org/10.1016/j.vehcom.2022.100495
Hafeez, S., et al. (2024), "Beta-UAV: blockchain-based efficient authentication for secure UAV communication", Cryptography and Security. 2024. DOI: https://doi.org/10.48550/arXiv.2402.15817
Yevdokymenko, M. O. (2020), "Theoretical foundations of fault-tolerant routing in telecommunication networks" ["Teoretychni osnovy vidmovostiikoji marshrutyzatsii v telekomunikatsiinykh merezhakh"], Dissertation, Kharkiv National University of Radioelectronics.
Yasinchuk, V. I. (2020), "Multipath routing based on ant colony algorithms" ["Bahatoshliakhova marshrutyzatsiia na osnovi alhorytmiv murashkovykh kolonii"], available at: https://dspace.wunu.edu.ua/bitstream/316497/1510/1/Yasinchuk%20V.I.%2C%20KSMzm-51.pdf (last accessed: 08.05.2025).
Krytskyi, D., Karatanov, O., Pohudina, O., Shevel, V., Bykov, A., Pyvovar, M., Plastun, T. (2024), "Information Technology for Determining the Flight Performance of a Paraglider Wing". Information Technologies in the Design of Aerospace Engineering, Springer Nature Switzerland, Р. 1–42. DOI: https://doi.org/10.1007/978-3-031-43579-9_1
Binko, I. V., Shevel, V. V., Bykov, A. M., Krytskyi, D. M. (2024), "Analysis of decentralized drone control model and interception trajectory calculation". Innovative Technologies and Scientific Solutions for Industries, No. 2 (28), Р. 33–47. DOI: https://doi.org/10.30837/2522-9818.2024.2.033
Yena, M. (2024), "Urban UAV mobility control: Swarm intelligence and collision avoidance", Innovative Technologies and Scientific Solutions for Industries, No. 4, Р. 210–218. DOI: https://doi.org/10.30837/2522-9818.2024.4.059
Terenyk, D., Kharchenko, V. (2024), "Deployment strategy selection and swarm UAV reliability support for communication in destruction conditions", Innovative Technologies and Scientific Solutions for Industries, No. 3, Р. 155–162. DOI: https://doi.org/10.30837/2522-9818.2024.3.091
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Our journal abides by the Creative Commons copyright rights and permissions for open access journals.
Authors who publish with this journal agree to the following terms:
Authors hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-commercial and non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their published work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.












