Trust-based routing methodology in uav swarm networks based on traffic analysis and anomaly detection

Authors

DOI:

https://doi.org/10.30837/2522-9818.2025.2.111

Keywords:

UAV swarm network, FANET, AODV, Black Hole attack, trust, NS-3 simulation, routing security, attack mitigation, NetDevice, malicious node detection.

Abstract

Subject matter. the subject of the research is the process of ensuring secure routing and data exchange among unmanned aerial vehicles (UAVs) within swarm networks under cyber threat conditions, particularly Black Hole-type attacks. Goal. The purpose of this study is to develop and simulate a secure information transmission mechanism for UAV swarm networks that takes into account node trust levels and enables the identification of malicious participants based on behavioral analysis. The study also aims to establish a methodology for secure and energy-efficient routing in FANETs based on blockchain technologies and trust evaluation models, ensuring cyber resilience, data integrity, and minimal resource usage. Tasks the following objectives were addressed during the research. Conduct a comprehensive analysis of vulnerabilities in traditional routing protocols used in FANETs to identify potential threats to information security: justify the use of trust-based mechanisms to improve routing resilience against internal attacks; implement a Black Hole attack model within the NS-3 simulation environment to analyze its impact on swarm network performance; develop a mechanism for counting forwarded packets per node as a foundation for a trust evaluation system among agents; visualize simulation results to support analysis and comparison of proposed methods. Methods: the research employs simulation modeling of FANETs in NS-3.36, using the RandomWaypoint mobility model and the AODV routing protocol. Methods include statistical analysis of packet forwarding metrics and graphical representation of trust metrics. The developed code simulates the Black Hole attack by manipulating the NetDevice layer and logs all transmitted packets in CSV format for post-processing. A combination of simulation tools, analytical analysis, and visualization techniques was applied to evaluate system performance under dynamic conditions. Results. The results demonstrate the effectiveness of the proposed approach in detecting malicious nodes within the swarm network. Trust metrics revealed anomalous attacker behavior, such as the absence of packet forwarding, distinguishing them from normal nodes. This allows for timely identification and exclusion of threats from the routing process. Graphical visualization clearly displays node activity distribution, facilitating result interpretation without the need for in-depth log analysis. Conclusions. The proposed trust-based mechanism, combined with node activity analysis, effectively protects FANET networks against Black Hole attacks. Future improvements may include integrating more advanced trust assessment methods, such as multifactor analysis, blockchain, or machine learning. Developing adaptive routing algorithms capable of autonomously isolating or excluding suspicious nodes is also recommended

Author Biographies

Iegor Sopov, National Aerospace University "Kharkiv Aviation Institute"

Postgraduate Student at the Department of Information Technology Design

Dmytro Krytskyi, National Aerospace University "Kharkiv Aviation Institute"

PhD (Engineering Sciences), Associate Professor, Associate Professor at the Department of Information Technology Design

Alina Artomova, National Aerospace University "Kharkiv Aviation Institute"

PhD (Engineering Sciences), Associate Professor, Associate Professor at the Department of Information Technology Design

Ihor Artomov, National Aerospace University "Kharkiv Aviation Institute"

Assistant at the Department of Information Technology Design

References

Список літератури

Liu E., Effiok E., Hitchcock J. Survey on health care applications in 5g networks. IET Communications, Р. 1073–1080. 2020. DOI: doi.org/10.1049/iet-com.2019.0813

Wang J., Liu Y., Niu S., Song H. Lightweight blockchain-assisted secure routing of swarm UAS networking. Computer Communications. 2020. Vol. 157. P. 66–75. DOI: https://doi.org/10.1016/j.comcom.2020.09.035

Alshammari H., Niazi M. Mitigating Black Hole and Sybil Attacks in UAV Swarm Networks using Blockchain and Fuzzy Logic. Sensors. 2023. Vol. 23, Issue 3. Article 625. DOI: https://doi.org/10.3390/s23030625

Gupta R. et al. Blockchain‐assisted secure UAV communication in 6G environment: Architecture, opportunities, and challenges. IET communications. 2021. Vol. 15. №. 10. Р. 1352-1367. DOI: 10.1049/cmu2.12113

Rosati S., Kruzelecki K., Heitz G., Floreano D., Rimoldi B. Dynamic Routing for Flying Ad Hoc Networks. IEEE Transactions on Vehicular Technology. 2016. Vol. 65, Issue 3. P. 1690–1700. DOI: https://doi.org/10.1109/TVT.2015.2415417

Akkaya K., Guvenc I., Aygun R., Pala N., Kadri A. Routing in unmanned aerial ad hoc networks: A survey. Ad Hoc Networks. 2020. Vol. 92. Article 101778. DOI: https://doi.org/10.1016/j.adhoc.2019.101778

Wang W.; Lv M.; Ru L.; Lu B.; Hu S.; Chang X. (2022). Multi-UAV Unbalanced Targets Coordinated Dynamic Task Allocation in Phases. Aerospace, 9, 491 р. 2022. DOI: https://doi.org/10.3390/aerospace9090491

Krytskyi D., Karatanov O., Pohudina O., Shevel V., Bykov A., Pyvovar M., Plastun T. Information Technology for Determining the Flight Performance of a Paraglider Wing. In Information Technologies in the Design of Aerospace Engineering Р. 1-42. Cham: Springer Nature Switzerland. 2023. DOI: https://doi.org/10.1007/978-3-031-43579-9_1

Zhou X. et al. Towards secure and resilient unmanned aerial vehicles swarm network based on blockchain. IET Blockchain. 2024. Vol. 4. Р. 483-493. DOI: https://doi.org/10.1049/blc2.12050

Li Z. et al. A secure and efficient UAV network defense strategy: Convergence of blockchain and deep learning //Computer Standards & Interfaces. 2024. Vol. 90. 103844 р. DOI: https://doi.org/10.1016/j.csi.2024.103844

Mershad K. PROACT: Parallel multi-miner proof of accumulated trust protocol for Internet of Drones. Vehicular Communications. 2022. Vol. 36. 100495 р. DOI: https://doi.org/10.1016/j.vehcom.2022.100495

Hafeez S. et al. Beta-UAV: blockchain-based efficient authentication for secure UAV communication. Cryptography and Security. 2024. DOI: https://doi.org/10.48550/arXiv.2402.15817

Євдокименко М. О. Теоретичні основи відмовостійкої маршрутизації в телекомунікаційних мережах: дис. д-ра техн. наук: 05.12.02. М. О. Євдокименко. Харк. нац. ун-т радіоелектроніки, 2020.

Ясінчук В. І. Багатошляхова маршрутизація на основі алгоритмів мурашкових колоній 2020. URL: https://dspace.wunu.edu.ua/bitstream/316497/1510/1/Yasinchuk%20V.I.%2C%20KSMzm-51.pdf

Krytskyi, D., Karatanov, O., Pohudina, O., Shevel, V., Bykov, A., Pyvovar, M., Plastun, T. Information Technology for Determining the Flight Performance of a Paraglider Wing. In Information Technologies in the Design of Aerospace Engineering. Cham: Springer Nature Switzerland. Р. 1-42. 2024. DOI: https://doi.org/10.1007/978-3-031-43579-9_1

Бінько І. В., Шевель В. В., Биков А. М., Крицький Д. М. Аналіз децентралізованої моделі управління дронів і розрахунок траєкторії перехоплення. Сучасний стан наукових досліджень та технологій в промисловості. 2024. № 2 (28). С. 33–47. DOI: https://doi.org/10.30837/2522-9818.2024.2.033

Єна М. Контроль міської мобільності БПЛА: ройовий інтелект і уникнення зіткнень. Сучасний стан наукових досліджень і технологій в промисловості. 2024. № 4. С. 210–218. DOI: 10.30837/2522-9818.2024.4.059

Тереник Д., Харченко В. Вибір стратегій розгортання і забезпечення надійності рою БПЛА для підтримки комунікацій в умовах руйнувань. Сучасний стан наукових досліджень і технологій в промисловості. 2024. № 3. С. 155–162. DOI: 10.30837/2522-9818.2024.3.091

References

Liu, E., Effiok, E., Hitchcock, J. (2020), "Survey on health care applications in 5G networks", IET Communications, Vol. 14, Р. 1073–1080. DOI: https://doi.org/10.1049/iet-com.2019.0813

Wang, J., Liu, Y., Niu, S., Song, H. (2020), "Lightweight blockchain-assisted secure routing of swarm UAS networking", Computer Communications, Vol. 157, Р. 66–75. DOI: https://doi.org/10.1016/j.comcom.2020.09.035

Alshammari, H., Niazi, M. (2023), "Mitigating Black Hole and Sybil Attacks in UAV Swarm Networks using Blockchain and Fuzzy Logic", Sensors, Vol. 23, No. 3, Article 625. DOI: https://doi.org/10.3390/s23030625

Gupta R., Nair A., Tanwar S., Kumar N. (2021), Blockchain-assisted secure UAV communication in 6G environment: Architecture, opportunities, and challenges. IET Communications, Vol. 15. №. 10. Р. 1352-1367.DOI: 10.1049/cmu2.12113

Rosati, S., Kruzelecki, K., Heitz, G., Floreano, D., Rimoldi, B. (2016), "Dynamic Routing for Flying Ad Hoc Networks", IEEE Transactions on Vehicular Technology, Vol. 65, No. 3, Р. 1690–1700. DOI: https://doi.org/10.1109/TVT.2015.2415417

Akkaya, K., Guvenc, I., Aygun, R., Pala, N., Kadri, A. (2020), "Routing in unmanned aerial ad hoc networks: A survey". Ad Hoc Networks. Vol. 92, Article 101778. DOI: https://doi.org/10.1016/j.adhoc.2019.101778.

Wang, W., Lv, M., Ru, L., Lu, B., Hu, S., Chang, X. (2022), "Multi-UAV Unbalanced Targets Coordinated Dynamic Task Allocation in Phases", Aerospace, Vol. 9, Article 491. DOI: https://doi.org/10.3390/aerospace9090491

Krytskyi, D., Karatanov, O., Pohudina, O., Shevel, V., Bykov, A., Pyvovar, M., Plastun, T. (2024), "Information Technology for Determining the Flight Performance of a Paraglider Wing". Information Technologies in the Design of Aerospace Engineering, Springer Nature Switzerland, Р. 1–42. DOI: https://doi.org/10.1007/978-3-031-43579-9_1

Zhou, X., Chen, H., Liu, J., He, Y., Wu, H. (2024), "Towards secure and resilient unmanned aerial vehicles swarm network based on blockchain", IET Blockchain, Vol. 4, Р. 483–493. DOI: https://doi.org/10.1049/blc2.12050

Li, Z., Chen, H., Sun, L., Wu, J., Li, Q. (2024), "A secure and efficient UAV network defense strategy: Convergence of blockchain and deep learning", Computer Standards & Interfaces, Vol. 90, Article 103844. DOI: https://doi.org/10.1016/j.csi.2024.103844

Mershad, K. (2022), "PROACT: Parallel multi-miner proof of accumulated trust protocol for Internet of Drones", Vehicular Communications, Vol. 36, Article 100495. DOI: https://doi.org/10.1016/j.vehcom.2022.100495

Hafeez, S., et al. (2024), "Beta-UAV: blockchain-based efficient authentication for secure UAV communication", Cryptography and Security. 2024. DOI: https://doi.org/10.48550/arXiv.2402.15817

Yevdokymenko, M. O. (2020), "Theoretical foundations of fault-tolerant routing in telecommunication networks" ["Teoretychni osnovy vidmovostiikoji marshrutyzatsii v telekomunikatsiinykh merezhakh"], Dissertation, Kharkiv National University of Radioelectronics.

Yasinchuk, V. I. (2020), "Multipath routing based on ant colony algorithms" ["Bahatoshliakhova marshrutyzatsiia na osnovi alhorytmiv murashkovykh kolonii"], available at: https://dspace.wunu.edu.ua/bitstream/316497/1510/1/Yasinchuk%20V.I.%2C%20KSMzm-51.pdf (last accessed: 08.05.2025).

Krytskyi, D., Karatanov, O., Pohudina, O., Shevel, V., Bykov, A., Pyvovar, M., Plastun, T. (2024), "Information Technology for Determining the Flight Performance of a Paraglider Wing". Information Technologies in the Design of Aerospace Engineering, Springer Nature Switzerland, Р. 1–42. DOI: https://doi.org/10.1007/978-3-031-43579-9_1

Binko, I. V., Shevel, V. V., Bykov, A. M., Krytskyi, D. M. (2024), "Analysis of decentralized drone control model and interception trajectory calculation". Innovative Technologies and Scientific Solutions for Industries, No. 2 (28), Р. 33–47. DOI: https://doi.org/10.30837/2522-9818.2024.2.033

Yena, M. (2024), "Urban UAV mobility control: Swarm intelligence and collision avoidance", Innovative Technologies and Scientific Solutions for Industries, No. 4, Р. 210–218. DOI: https://doi.org/10.30837/2522-9818.2024.4.059

Terenyk, D., Kharchenko, V. (2024), "Deployment strategy selection and swarm UAV reliability support for communication in destruction conditions", Innovative Technologies and Scientific Solutions for Industries, No. 3, Р. 155–162. DOI: https://doi.org/10.30837/2522-9818.2024.3.091

Published

2025-07-08

How to Cite

Sopov, I., Krytskyi, D., Artomova, A., & Artomov, I. (2025). Trust-based routing methodology in uav swarm networks based on traffic analysis and anomaly detection. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (2(32), 111–128. https://doi.org/10.30837/2522-9818.2025.2.111