Adaptive pre-processing methods for increasing the accuracy of segmentation of dental X-RAY images

Authors

DOI:

https://doi.org/10.30837/2522-9818.2024.3.029

Keywords:

artificial intelligence; deep learning; image segmentation; panoramic x-rays of teeth; preliminary processing; CLAHE; bilateral filter

Abstract

The subject of research in the article is the effectiveness of adaptive methods of preprocessing of medical images, in particular adaptive bilateral filter and modified CLAHE, in the tasks of segmentation of dental X-ray images. These methods make it possible to preserve important image details and effectively reduce noise, even in cases of high variability of images coming from different sources. The goal of the work is to study the impact of adaptive preprocessing methods on increasing the accuracy of segmentation of medical images and to determine the optimal combination of methods that provide the best results in segmentation tasks. The article addresses the following tasks: experimental comparison of adaptive preprocessing methods with traditional approaches, evaluation of segmentation efficiency using metrics such as Dice Score, Jacquard Coefficient (IoU Score), Precision and Sensitivity/Completeness (Recall)), as well as analysis of the effect of pre-processing on the quality of segmentation. The following methods are used: mathematical modeling, neural network training based on the U-Net model with a pre-trained timm-resnest101e encoder, image scaling to 512x512 pixels, training with a fixed learning rate of 0.001. The following results were obtained: the combined use of the adaptive bilateral filter and the modified CLAHE provided the highest segmentation quality indicators (Dice Score 0.9603 and Jacquard Coefficient (IoU Score) 0.94501), surpassing traditional methods. This proves the advantage of adaptive approaches in preserving the contours of objects and reducing noise. Conclusions: the application of adaptive preprocessing methods significantly improves the accuracy of segmentation of medical images. The combined approach including the adaptive bilateral filter and the modified CLAHE is the most effective for medical imaging tasks, which increases the accuracy of diagnosis and the reliability of automated decision support systems.

Author Biography

Oleh Komenchuk, Vinnytsia National Technical University

Postgraduate Student, Faculty of Intelligent Information Technologies and Automation

References

Список літератури

Komenchuk O. V., Mokin O. B. Analysis of Methods for Preprocessing of Panoramic Dental X-Rays for Image Segmentation Tasks. Visnyk of Vinnytsia Politechnical Institute. 2023. Vol. 170, No. 5. P. 41–49. DOI: https://doi.org/10.31649/1997-9266-2023-170-5-41-49

Towards a better understanding of annotation tools for medical imaging: a survey / M. Aljabri et al. Multimedia Tools and Applications. 2022. Р. 25877–2591. DOI: https://doi.org/10.1007/s11042-022-12100-1

Abdi A. H., Kasaei S., Mehdizadeh M. Automatic segmentation of mandible in panoramic x-ray. Journal of Medical Imaging. 2015. Vol. 2, No. 4. 44003 р. DOI: https://doi.org/10.1117/1.jmi.2.4.044003

S. S. Simon, and X. F. Joseph. Pre-Processing of Dental X-Ray Images Using Adaptive Histogram Equalization Method. Italienisch, Vol. 9, No. 1, P. 87–96, 2019. URL: https://www.italienisch.nl/index.php/VerlagSauerlander/article/view/45

Advances in Deep Learning-Based Medical Image Analysis / X. Liu et al. Health Data Science. 2021. Vol. 2021. P. 1–14. DOI: https://doi.org/10.34133/2021/8786793

Vasuki P., Kanimozhi J., Devi M. B. A survey on image preprocessing techniques for diverse fields of medical imagery. 2017 IEEE international conference on electrical, instrumentation and communication engineering (ICEICE), Karur, 27–28 April 2017. DOI: https://doi.org/10.1109/iceice.2017.8192443

Abdi A. Panoramic Dental X-rays with Segmented Mandibles. Mendeley Data. URL: https://data.mendeley.com/datasets/hxt48yk462/2 (date of access: 17.09.2024).

Lin W., Lin Y. Soybean image segmentation based on multi-scale Retinex with color restoration. Journal of Physics: Conference Series. 2022. Vol. 2284, No. 1. 12010 р. DOI: https://doi.org/10.1088/1742-6596/2284/1/012010

Prabu Shankar K. C., Prayla Shyry S. A Survey of image pre-processing techniques for medical images. Journal of Physics: Conference Series. 2021. Vol. 1911, No. 1. 12003 р. DOI: https://doi.org/10.1088/1742-6596/1911/1/012003

Shirai K., Sugimoto K., Kamata S.-I. Adjoint Bilateral Filter and Its Application to Optimization-based Image Processing. APSIPA Transactions on Signal and Information Processing. 2022. Vol. 11, No. 1. DOI: https://doi.org/10.1561/116.00000046

Li H., Duan X.-L. SAR Ship Image Speckle Noise Suppression Algorithm Based on Adaptive Bilateral Filter. Wireless Communications and Mobile Computing. 2022. Vol. 2022. P. 1–10. URL: https://doi.org/10.1155/2022/9392648 (date of access: 17.09.2024).

Smart Image Enhancement Using CLAHE Based on an F-Shift Transformation during Decompression / R. Fan et al. Electronics. 2020. Vol. 9, No. 9. 1374 р. DOI: https://doi.org/10.3390/electronics9091374

Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany. 2015. Р. 234–241, DOI: https://doi.org/10.1007/978-3-319-24574-4_28

GitHub – huggingface/pytorch-image-models: The largest collection of PyTorch image encoders / backbones. Including train, eval, inference, export scripts, and pretrained weights – ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (ViT), MobileNetV4, MobileNet-V3 & V2, RegNet, DPN, CSPNet, Swin Transformer, MaxViT, CoAtNet, ConvNeXt, and more. GitHub. URL: https://github.com/huggingface/pytorch-image-models

Albumentations Documentation. Albumentations: fast and flexible image augmentations. URL: https://albumentations.ai/docs/

van Beers F., Lindström A., Okafor E., Wiering M. Deep Neural Networks with Intersection over Union Loss for Binary Image Segmentation. In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods (Vol. 1 ICPRAM). 2019. P. 438–445. URL: https://pure.rug.nl/ws/portalfiles/portal/87088047/ICPRAM_2019_35.pdf

Li F., Jiang Q., Zhang H., Ren T., Liu S., Zou X., Xu H., Li H., Yang J., Li C., Zhang L., Gao J. Visual In-Context Prompting. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2024. Р. 12861–12871. URL: https://openaccess.thecvf.com/content/CVPR2024/papers/Li_Visual_In-Context_Prompting_CVPR_2024_paper.pdf

References

Komenchuk, O. V. & Mokin, O. B. (2023), "Analysis of Methods for Preprocessing of Panoramic Dental X-Rays for Image Segmentation Tasks", Visnyk of Vinnytsia Politechnical Institute, vol. 170, No. 5, Р. 41–49. DOI: https://doi.org/10.31649/1997-9266-2023-170-5-41-49

Aljabri, M. et al. (2022), "Towards a better understanding of annotation tools for medical imaging: a survey", Multimedia Tools and Applications. Р. 25877–2591. DOI: https://doi.org/10.1007/s11042-022-12100-1

Abdi, A. H., Kasaei, S. & Mehdizadeh, M. (2015), "Automatic segmentation of mandible in panoramic x-ray", Journal of Medical Imaging, Vol. 2, No. 4, 44003 р. DOI: https://doi.org/10.1117/1.jmi.2.4.044003

Simon, S. S. & Joseph, X. F. (2019), "Pre-Processing of Dental X-Ray Images Using Adaptive Histogram Equalization Method", Italienisch, Vol. 9, No. 1, Р. 87–96. available at: https://www.italienisch.nl/index.php/VerlagSauerlander/article/view/45

Liu, X. et al. (2021), "Advances in Deep Learning-Based Medical Image Analysis", Health Data Science, Vol. 2021, Р. 1–14. DOI: https://doi.org/10.34133/2021/8786793

Vasuki, P., Kanimozhi, J. & Devi, M. B. (2017), "A survey on image preprocessing techniques for diverse fields of medical imagery", 2017 IEEE international conference on electrical, instrumentation and communication engineering (ICEICE), Karur, 27–28 April 2017. DOI: https://doi.org/10.1109/iceice.2017.8192443

Abdi, A. (2024), "Panoramic Dental X-rays With Segmented Mandibles. Mendeley Data". available at: https://data.mendeley.com/datasets/hxt48yk462/2 (accessed: 17 September 2024).

Lin, W. & Lin, Y. (2022), "Soybean image segmentation based on multi-scale Retinex with color restoration", Journal of Physics: Conference Series, Vol. 2284, No. 1, 12010 р. DOI: https://doi.org/10.1088/1742-6596/2284/1/012010

Prabu Shankar, K. C. & Prayla Shyry, S. (2021), "A Survey of image pre-processing techniques for medical images", Journal of Physics: Conference Series, Vol. 1911, No. 1, 12003 р. DOI: https://doi.org/10.1088/1742-6596/1911/1/012003

Shirai, K., Sugimoto, K. & Kamata, S.-i. (2022), "Adjoint Bilateral Filter and Its Application to Optimization-based Image Processing", APSIPA Transactions on Signal and Information Processing, Vol. 11, No. 1. DOI: https://doi.org/10.1561/116.00000046

Li, H. & Duan, X.-L. (2022), "SAR Ship Image Speckle Noise Suppression Algorithm Based on Adaptive Bilateral Filter", Wireless Communications and Mobile Computing, Vol. 2022, Р. 1–10. available at: https://doi.org/10.1155/2022/9392648 (accessed: 17 September 2024).

Fan, R. et al. (2020), "Smart Image Enhancement Using CLAHE Based on an F-Shift Transformation during Decompression", Electronics, Vol. 9, No. 9, 1374 р. DOI: https://doi.org/10.3390/electronics9091374

Ronneberger, O., Fischer, P. & Brox, T. (2015), "U-Net: Convolutional Networks for Biomedical Image Segmentation", Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany. Р. 234–241, DOI: https://doi.org/10.1007/978-3-319-24574-4_28

"GitHub (n.d.) 'GitHub – huggingface/pytorch-image-models: The largest collection of PyTorch image encoders / backbones', GitHub". available at: https://github.com/huggingface/pytorch-image-models

"Albumentations Documentation (n.d.) Albumentations: fast and flexible image augmentations". available at: https://albumentations.ai/docs/

van Beers, F. et al. (2019), "Deep Neural Networks with Intersection over Union Loss for Binary Image Segmentation", In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods (Vol. 1 ICPRAM), pp. 438–445. available at: https://pure.rug.nl/ws/portalfiles/portal/87088047/ICPRAM_2019_35.pdf

Li, F. et al. (2024), "Visual In-Context Prompting", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Р. 12861–12871. available at: https://openaccess.thecvf.com/content/CVPR2024/papers/Li_Visual_In-Context_Prompting_CVPR_2024_paper.pdf

Published

2024-09-30

How to Cite

Komenchuk, O. (2024). Adaptive pre-processing methods for increasing the accuracy of segmentation of dental X-RAY images. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (3 (29), 29–38. https://doi.org/10.30837/2522-9818.2024.3.029