Development of a model of the process of development of manufacturing defects in automation means
DOI:
https://doi.org/10.30837/2522-9818.2024.3.048Keywords:
automation tools; manufacturing defects; environment; thermodynamic model; guaranteed prediction.Abstract
In automated process control systems, automation equipment (sensors, converters, amplifiers, etc.) with technical defects arising during their manufacture, which are one of the main causes of failures, is widely used. The paper establishes the possibility of using the laws of nonequilibrium thermodynamics as the basis for determining the relationship between the controlled parameters of automation equipment and the parameters of the displayed medium, which made it possible to build a deterministic model of the development of production defects and, ultimately, determine the directions for changing and adjusting the technological processes of production of automation equipment. A method has been developed for implementing a guaranteed forecast of changes in the parameters of automation equipment based on solving the evolution equation using optimal filtering algorithms, which is the subject of research. The purpose of the work is to improve the quality and reliability of automation equipment by improving the monitoring of defects arising in the production of instruments, functional units and sensors of automation equipment. The article solves the following problems: analysis of existing approaches to the problem of manufacturing defects and methods for their detection and setting a research task; modeling of the process of development of production defects causing changes in the technical condition of automation equipment; development of a decision-making method based on guaranteed prediction of the technical state of automation equipment. The methodology of work is based on the methods of thermodynamic description of the kinetics of processes (when developing a model of the process of development of production defects that cause a change in technical condition) and methods of assessment and forecasting based on optimal filtering algorithms (when developing a decision-making method based on guaranteed foresight of technical condition). The results of the work include a model of the process of development of manufacturing defects that cause a change in the technical condition of automation equipment, and a decision-making method based on a guaranteed forecast of the technical condition of automation equipment. Conclusions. The paper establishes the possibility of using the laws of nonequilibrium thermodynamics to determine the relationship between the controlled parameters of automation equipment and the displayed medium, and to build a deterministic thermodynamic model of the development of production defects. Disclosed is an equation of evolution of technical state of automation equipment based on a deterministic kinetic model of processes occurring in a multicomponent medium, and an observation model which takes into account errors caused by instability of external effects and measurement errors. Disclosed is a method of implementing a guaranteed forecast of change in parameters of automation equipment based on solving the evolution equation using optimal filtering algorithms, which are used to solve estimation and prediction problems.
References
Список літератури
Nevlyudov I., Andrusevich A., Starodubcev N., Vlasenkov D. Modeling the technical resource of electronic components of automation equipment. International independent scientific journal. 2021. № 30. Р. 61–65. URL: https://www.iis-journal.com/wp-content/uploads/2024/03/IISJ_30.pdf
Андрусевич А.О., Мосьпан Д.В., Стародубцев М.Г., Невлюдова В.В. Термодинамічна модель процесів розвитку виробничих дефектів радіоелектронних засобів. Електромеханічні та енергозберігаючі системи. 2014. № 4 (28). С. 113–119. URL: https://ees.kdu.edu.ua/statti/2014_4_113.pdf
Жарикова І.В., Невлюдов І.Ш., Андрусевич А.О., Аллахверанов Р.Ю. Методологія моделювання процесу витрачання ресурсу РЕЗ в рамках моніторингу його життєвого циклу. Системи озброєння і військова техніка. 2014. № 3 (39). С. 84–87. URL: https://www.hups.mil.gov.ua/periodic-app/journal/soivt/2014/3
Timoshenko A.V., Perlov A.Yu., Pankratov V.A., Kazantsev A.M., Lvov K.V. Methods for Failures Forecasting of Complex Radio Electronic Systems. Systems of Signal Synchronization, Generating and Processing in Telecommunications. 2020. p. 1–4. URL: https://ieeexplore.ieee.org/document/9166098
Заярнюк П.М. Підвищення ефективності оцінювання надійності радіоелектронної апаратури з урахуванням особливостей дрейфів параметрів і статистики відмов: дис. канд. техн. наук. Львів., 2017. 164 с. URL: https://ena.lpnu.ua/items/e4dd7f7b-56ef-4f04-b600-8a6165c393d7
Nevliudov I., Andrusevich A., Starodubtsev N., Demska N., Vzhesnievskyi M. Снoice of informative attributes for monitoring of the electronic components of automatics lifecycle. Innovative integrated computer systems in strategic project management: сollective monograph. 2022. ed. by I. Linde, Riga. Р. 139–150. DOI: https://doi.org/10.30837/mmp.2022.139
Solyonyj S., Rysin A., Voropaev I., Solenaya O., & Sozdateleva M. Automated Product Life-Cycle Control System. In Electromechanics and Robotics. Springer, Singapore. 2022. Р. 437–449. DOI: https://10.1007/978-981-16-2814-6_38
Невлюдов І.Ш., Филипенко О.І., Андрусевич А.О., Стародубцев М.Г. Підтримка життєвого циклу у виробничій інженерії: монографія. Криворізький коледж НАУ. 2019. 252 с. URL: http://openarchive.nure.ua/handle/document/9541
Starodubtsev N.H., Fomovskyi F.V., Nevliudova V.V., Malaia Y.A., Demskaia N.P. Matematychne modeliuvannia vyboru informatyvnykh oznak dlia analizu stanu protsesiv zhyttievoho tsyklu radioelektronnykh zasobiv. Innovative Technologies and Scientific Solutions for Industries. 2017. 1 (1). Р. 82–89. URL: https://itssi-journal.com/index.php/ittsi/issue/view/1
Мартинюк В.В., Жагловська О.М. Статистична фізика. ВНТУ, 2014. 281 с. URL: https://ela.kpi.ua/server/api/core/bitstreams/c8c237c1-33aa-4b63-8336-7f38f0822b54/content
Венгер Є.Ф., Грибань В.М., Мельничук О.В. Основи теоретичної фiзики. Вища школа, 2011. 430 с. URL: https://www.nas.gov.ua/UA/Book/Pages/default.aspx?BookID=0000006233
Ткачук Р.А., Дозорський В.Г., Дедів Л.Є., Дедів І.Ю. Основи технології радіоелектронних апаратів. Тернопільський національний технічний університет ім. Івана Пулюя, 2017. 336 с. URL: https://elartu.tntu.edu.ua/handle/lib/21401
Губар В. Г., Адаменко І. О. Фiзико-теоретичнi основи проєктування радіоелектронної апаратури. КПІ ім. Ігоря Сікорського, 2020. 221 с. URL: https://ela.kpi.ua/server/api/core/bitstreams/d4d5ff7d-6f3b-4a42-ada0-7b5da2cc6a7e/content
Буляндра О.Ф. Технічна термодинаміка: 2-ге вид., випр. Техніка, 2006. 320 с. URL: https://dspace.nuft.edu.ua/items/9ffea81b-1f6d-4de0-ace2-e731999dfabf
Герасимов О.І. Фізика складних нерівноважних систем та процесів: монографія. Одеський державний екологічний університет, 2022. 187 с. URL: http://eprints.library.odeku.edu.ua/id/eprint/11406/1/gerasymov_fisyka_sklad_nerivn_system_ta_protsesiv-monogr_2022.pdf
References
Nevlyudov, I., Andrusevich, A., Starodubcev, N., Vlasenkov, D. (2021), "Modeling the technical resource of electronic components of automation equipment", International independent scientific journal, № 30, Р. 61–65. available at: https://www.iis-journal.com/wp-content/uploads/2024/03/IISJ_30.pdf
Andrusevich, А.О., Mospan, D.V., Starodubcev, М.G., Nevlyudovа, V.V. (2014), "Thermodynamic model of processes of development of production defects of radio electronic means" ["Termodynamichna model protsesiv rozvytku vyrobnychykh defektiv radioelektronnykh zasobiv"], Electromechanical and energy saving systems, № 4 (28), P. 113–119. available at:https://ees.kdu.edu.ua/statti/2014_4_113.pdf
Zharikova, І.V., Nevlyudov, I.Sh., Andrusevich, А.О., Allakhveranov, R.U. (2014), "Methodology for modeling the process of spending the RES resource as part of monitoring its life cycle" ["Metodolohiia modeliuvannia protsesu vytrachannia resursu REZ v ramkakh monitorynhu yoho zhyttievoho tsyklu"], Weapons systems and military equipment, № 3 (39), P. 84–87. available at: https://www.hups.mil.gov.ua/periodic-app/journal/soivt/2014/3
Timoshenko, A.V., Perlov, A.Yu., Pankratov, V.A., Kazantsev, A.M., Lvov, K.V. (2020), "Methods for Failures Forecasting of Complex Radio Electronic Systems", Systems of Signal Synchronization, Generating and Processing in Telecommunications. P. 1–4. available at: https://ieeexplore.ieee.org/document/9166098
Zaiarniuk, P.М. (2017), "Improving the efficiency of assessing the reliability of electronic equipment, taking into account the features of parameter drift and failure statistics" ["Pidvyshchennia efektyvnosti otsiniuvannia nadiinosti radioelektronnoi aparatury z urakhuvanniam osoblyvostei dreifiv parametriv i statystyky vidmov"]: dys. kand. tekhn. nauk, Lviv, 164 p. available at: https://ena.lpnu.ua/items/e4dd7f7b-56ef-4f04-b600-8a6165c393d7
Nevliudov, I., Andrusevich, A., Starodubtsev, N., Demska, N., Vzhesnievskyi, M. (2022), "Снoice of informative attributes for monitoring of the electronic components of automatics lifecycle", Innovative integrated computer systems in strategic project management: сollective monograph, ed. by I. Linde, Riga, P. 139–150. DOI: https://doi.org/10.30837/mmp.2022.139
Solyonyj, S., Rysin, A., Voropaev, I., Solenaya, O., & Sozdateleva, M. (2022), "Automated Product Life-Cycle Control System", Electromechanics and Robotics, Springer, Singapore, P. 437–449. DOI: https://10.1007/978-981-16-2814-6_38
Nevlyudov, I.Sh., Fylypenko, О.І., Andrusevich, А.О., Starodubcev, М.G. (2019), "Life Cycle Support in Manufacturing Engineering" ["Pidtrymka zhyttievoho tsyklu u vyrobnychii inzhenerii"]: monohrafiia, Kryvorizkyi koledzh NAU, 252 p. available at: http://openarchive.nure.ua/handle/document/9541
Starodubtsev, N.H., Fomovskyi, F.V., Nevliudova, V.V., Malaia, Y.A., Demskaia, N.P. (2017), "Mathematical modeling of the choice of informative features for the analysis of the state of the processes of the life cycle of radio-electronic means" ["Matematychne modeliuvannia vyboru informatyvnykh oznak dlia analizu stanu protsesiv zhyttievoho tsyklu radioelektronnykh zasobiv"], Innovative Technologies and Scientific Solutions for Industries, 1 (1), P. 82–89. available at: https://itssi-journal.com/index.php/ittsi/issue/view/1
Martyniuk, V.V., Zhahlovska, O.M. (2014), "Statistical physics" ["Statystychna fizyka"], VNTU, 281 p. available at: https://ela.kpi.ua/server/api/core/bitstreams/c8c237c1-33aa-4b63-8336-7f38f0822b54/content
Venher, Y.F., Hryban, V.M., Melnychuk, O.V. (2011), "Fundamentals of theoretical physics" ["Osnovy teoretychnoi fizyky"], Vyshcha shkola, 430 p. available at: https://www.nas.gov.ua/UA/Book/Pages/default.aspx?BookID=0000006233
Tkachuk, R.A., Dozorskyi, V.H., Dediv, L.Ie., Dediv, I.Iu. (2017), "Fundamentals of the technology of electronic devices" ["Osnovy tekhnolohii radioelektronnykh aparativ"], Ternopilskyi natsionalnyi tekhnichnyi universytet im. Ivana Puliuia, 336 p. available at: https://elartu.tntu.edu.ua/handle/lib/21401
Hubar, V. H., Adamenko, I. O. (2020), "Fizico-theoretical fundamentals of designing electronic equipment" ["Fizyko-teoretychni osnovy proiektuvannia radioelektronnoi aparatury"], KPI im. Ihoria Sikorskoho, 221 p. available at: https://ela.kpi.ua/server/api/core/bitstreams/d4d5ff7d-6f3b-4a42-ada0-7b5da2cc6a7e/content
Buliandra, O.F. (2006), "Technical thermodynamics" ["Tekhnichna termodynamika"], Tekhnika, 320 p. available at: https://dspace.nuft.edu.ua/items/9ffea81b-1f6d-4de0-ace2-e731999dfabf
Herasymov, O.I. (2022), "Physics of complex non-equilibrium systems and processes" ["Fizyka skladnykh nerivnovazhnykh system ta protsesiv"]: monohrafiia, Odeskyi derzhavnyi ekolohichnyi universytet, 187 p. available at: http://eprints.library.odeku.edu.ua/id/eprint/11406/1/gerasymov_fisyka_sklad_nerivn_system_ta_protsesiv-monogr_2022.pdf
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Our journal abides by the Creative Commons copyright rights and permissions for open access journals.
Authors who publish with this journal agree to the following terms:
Authors hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-commercial and non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their published work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.