Low-power coding method in data transmission systems
DOI:
https://doi.org/10.30837/2522-9818.2024.3.121Keywords:
coding; unit distance codes; energy efficient coding; switching activity; equivalence; classification; enumeration.Abstract
The object of the study is the Network-on-Chip (NoC) technology, which has become a popular choice for the on-chip communication architecture of modern System-on-Chip (SoC) devices. The subject matter of the article is methods of reducing dissipated power in NoC and SoC. The goal of the work is: development of a low-power coding method that allows for the efficient transmission or storage of information. The following tasks are solved in the article: analysis of classification methods for combinatorial structures, construction a system of typical representatives and analysis of their characteristics. The research methods are based on the use of set theory, system theory and combinatorics. The following results are obtained: analyzed factors that affect the dissipated power, considered principles of constructing energy-efficient codes. It is shown that switching activity significantly affects the total power and one of the effective methods for reducing switching activity during communication between devices or on-chip communication is the use of low-power coding methods. A method of hierarchical classification of unit distance codes and algorithms for solving step-by-step problems have been developed. The method is based on the invariant approach and construction of a system of different representatives. Estimates of their number have been obtained, characteristics have been determined, and catalogs of typical representatives have been formed. Conclusions. The article analyzes factors that affect dissipated power, and considers the principles of constructing energy-efficient codes. A method of hierarchical classification of single distance codes and algorithms for solving step-by-step problems have been developed, and catalogs of typical representatives have been formed. The application of the developed method will allow developers to analyze and select codes with the best properties and, as a result, obtain better results in terms of network delays, energy costs, and other design limitations for computer systems.
References
Список літератури
Taha T. B., Barzinjy A. A., Hussain F. H. Nanotechnology and computer science: Trends and advances. Memories-Materials, Devices, Circuits and Systems. 2022. Vol. 2. 100011 р. DOI: https://doi.org/10.1016/j.memori.2022.100011
Samanth R., Nayak S. G., Nempu P. B. A Novel Multiply-Accumulator Unit Bus Encoding Architecture for Image Processing Applications. Iranian Journal of Electrical and Electronic Engineering. 2023. Vol. 19. №. 1. P. 1–11. DOI: https://doi.org/10.22068/IJEEE.19.1.2391
Chennakesavulu M., Prasad T. J., Sumalatha V. Data encoding techniques to improve the performance of system on chip. Journal of King Saud University-Computer and Information Sciences. 2022. Vol. 34. №. 2. P. 492–503. DOI: https://doi.org/10.1016/j.jksuci.2018.12.003
West D. B. Combinatorial mathematics. Cambridge University Press, 2021. 988 p. DOI: 10.1017/9781107415829
Huffman W. C., Kim J. L., Solé P. Concise encyclopedia of coding theory. Chapman and Hall/CRC, 2021. 998 p. DOI: https://doi.org/10.1201/9781315147901
Стоян Ю. Г., Гребенник И. В. Комбинаторные виды для перечисления комбинаторных конфигураций со специальными свойствами. Доп. НАН України. 2010. № 7. С. 28–32. URL: http://dspace.nbuv.gov.ua/handle/123456789/29920
Stanley R. P. Enumerative Combinatorics. Vol.1 second edition. Cambridge studies in advanced mathematics. 2011. 440 p.
Polya G. Mathematics and plausible reasoning, Volume 1: Induction and analogy in mathematics. Princeton University Press, 2020. 296 p.
Charalambides C. A. Enumerative combinatorics. Chapman and Hall/CRC, 2018. 632 p. DOI https://doi.org/10.1201/9781315273112
Strozecki Y. Enumeration complexity. Bulletin of EATCS. 2019. Vol. 3. №. 129. URL: http://bulletin.eatcs.org/index.php/beatcs/article/view/596/605
Lucatero C. R. Combinatorial Enumeration of Graphs. Probability, Combinatorics and Control. London, UK: IntechOpen. 2019. DOI: 10.5772/intechopen.88805
Klazar M. Combinatorial Algebraic Counting. Prague. 2022. 51 p.
Cameron N. T., Nkwanta A. Riordan matrices and lattice path enumeration. Not. Am. Math. Soc. 2023. Vol. 70. P. 231–242. DOI: 10.3390/appliedmath3010012
Zhongmu C. An extension of Burnside theorem. Acta Math. Sinica. 1964. Vol. 14. P. 75–77.
Harary F., Palmer E. M. Graphical enumeration. Elsevier, 2014. 286 p.
De Bruijn N. G. Polya's theory of counting. Applied combinatorical mathematics. 1964. P. 144–184.
Mala F. A. Three Open Problems in Enumerative Combinatorics. Applied Mathematics and Computation. 2023. Vol. 7. № 1. P. 24–27. DOI: 10.26855/jamc.2023.03.004
Shablya Y., Merinov A., Kruchinin D. Combinatorial Generation Algorithms. Mathematics. 2024. Vol. 12. №. 8. P. 1–18. DOI: https://doi.org/10.3390/math12081207
Стоян Ю. Г., Гребенник И. В. Описание классов комбинаторных конфигураций на основе отображений. Доп. НАН України. 2008. № 10. С. 28–31.
Yareshchenko, V., Kosenko, V. Coding to reduce the energy of data movement. Системи управління, навігації та зв’язку. Збірник наукових праць. Полтава: ПНТУ. 2023. V. 1 (71). P. 159–162. DOI: https://doi.org/10.26906/SUNZ.2023.1.159
Ярещенко В.В., Косенко В.В. Кодування з низьким енергоспоживанням. Електронні та мехатронні системи: теорія, інновації, практика: зб. наук. пр. за матеріалами ІХ Всеукр. наук.-практ. конф., 10 листоп. 2023 р. Полтава: Нац. ун-т ім. Юрія Кондратюка, 2023. С. 67–68. URL: https://reposit.nupp.edu.ua/handle/PoltNTU/14093
Zhang, J., Yang, G., Hung, W. N. A canonical-based NPN Boolean matching algorithm utilizing Boolean difference and cofactor signature. IEEE Access. 2017. Vol. 5. С. 27777–27785. DOI 10.1109/ACCESS.2017.2778338
References
Taha, T. B., Barzinjy, A. A., Hussain, F. H. (2022), "Nanotechnology and computer science: Trends and advances". Memories-Materials, Devices, Circuits and Systems. Vol. 2. 100011 р. DOI: https://doi.org/10.1016/j.memori.2022.100011
Samanth, R., Nayak, S. G., Nempu, P. B. (2023), "A Novel Multiply-Accumulator Unit Bus Encoding Architecture for Image Processing Applications". Iranian Journal of Electrical and Electronic Engineering. Vol. 19. No. 1. P. 1–11. DOI: https://doi.org/10.22068/IJEEE.19.1.2391
Chennakesavulu, M., Prasad, T. J., Sumalatha, V. (2022), "Data encoding techniques to improve the performance of system on chip". Journal of King Saud University-Computer and Information Sciences. Vol. 34. No. 2. P. 492–503. DOI: https://doi.org/10.1016/j.jksuci.2018.12.003
West, D. B. (2021), "Combinatorial mathematics". Cambridge University Press. 988p. DOI: 10.1017/9781107415829
Huffman, W. C., Kim, J. L., Solé, P. (2021), "Concise encyclopedia of coding theory". Chapman and Hall/CRC. 998 p. DOI: https://doi.org/10.1201/9781315147901
Stoyan, Yu. G., Grebennik, I. V. (2010), "Combinatorial types for enumeration of combinatorial configurations with special properties". Suppl. NAS of Ukraine. No.7. Р. 28–32. available at: http://dspace.nbuv.gov.ua/handle/123456789/29920
Stanley, R. P. (2011), "Enumerative Combinatorics". Vol. 1 second edition. Cambridge studies in advanced mathematics. 440 p.
Polya, G. (2020), "Mathematics and plausible reasoning, Volume 1: Induction and analogy in mathematics". Princeton University Press. 296 p.
Charalambides, C. A. (2018), "Enumerative combinatorics". Chapman and Hall/CRC. 632 p. DOI: https://doi.org/10.1201/9781315273112
Strozecki, Y. (2019), "Enumeration complexity". Bulletin of EATCS. Vol. 3. No. 129. available at: http://bulletin.eatcs.org/index.php/beatcs/article/view/596/605
Lucatero, C. R. (2019), "Combinatorial Enumeration of Graphs". Probability, Combinatorics and Control. London, UK: IntechOpen. DOI: 10.5772/intechopen.88805
Klazar, M. (2022), "Combinatorial Algebraic Counting". Prague. 51 p.
Cameron, N. T., Nkwanta, A. (2023), "Riordan matrices and lattice path enumeration". Not. Am. Math. Soc. Vol. 70. P. 231–242. DOI: 10.3390/appliedmath3010012
Zhongmu, C. (1964), "An extension of Burnside theorem". Acta Math. Sinica. Vol. 14. P. 75–77.
Harary, F., Palmer, E. M. (2014), "Graphical enumeration". Elsevier. 286 p.
De Bruijn, N. G. (1964), "Polya's theory of counting". Applied combinatorical mathematics. P. 144–184.
Mala, F. A. (2023). "Three Open Problems in Enumerative Combinatorics". Applied Mathematics and Computation. Vol. 7. No. 1. P. 24–27. DOI: 10.26855/jamc.2023.03.004
Shablya, Y., Merinov, A., Kruchinin, D. (2024), "Combinatorial Generation Algorithms". Mathematics. Vol. 12. No. 8. P. 1–18. DOI: https://doi.org/10.3390/math12081207
Stoyan, Yu. G., Grebennik, I. V. (2008), "Description of classes of combinatorial configurations based on mappings". Dop. NAS of Ukraine. No. 10. P. 28–31.
Yareshchenko, V., Kosenko, V. (2023), "Coding to reduce the energy of data movement". Management, navigation and communication systems. Collection of scientific works. Poltava: PNTU. Vol. 1 (71). P. 159–162. DOI: https://doi.org/10.26906/SUNZ.2023.1.159
Yareschenko, V. V., Kosenko, V. V. (2023), "Low energy coding". Electronic and mechatrony systems: theory, innovation, practice: Coll. Sciences. BC according to the materials of IX All -Ukrainian. scientific-practical. conf., 10 November. Poltava: Nat. Univ. Yuri Kondratyuk. P. 67–68. available at: https://reposit.nupp.edu.ua/handle/PoltNTU/14093
Zhang, J., Yang, G., Hung, W. N. (2017), "A canonical-based NPN Boolean matching algorithm utilizing Boolean difference and cofactor signature". IEEE Access. Vol. 5. Р. 27777–27785. DOI: 10.1109/ACCESS.2017.2778338
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Our journal abides by the Creative Commons copyright rights and permissions for open access journals.
Authors who publish with this journal agree to the following terms:
Authors hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-commercial and non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their published work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.