Low-power coding method in data transmission systems

Authors

DOI:

https://doi.org/10.30837/2522-9818.2024.3.121

Keywords:

coding; unit distance codes; energy efficient coding; switching activity; equivalence; classification; enumeration.

Abstract

The object of the study is the Network-on-Chip (NoC) technology, which has become a popular choice for the on-chip communication architecture of modern System-on-Chip (SoC) devices. The subject matter of the article is methods of reducing dissipated power in NoC and SoC. The goal of the work is: development of a low-power coding method that allows for the efficient transmission or storage of information. The following tasks are solved in the article: analysis of classification methods for combinatorial structures, construction a system of typical representatives and analysis of their characteristics. The research methods are based on the use of set theory, system theory and combinatorics. The following results are obtained: analyzed factors that affect the dissipated power, considered principles of constructing energy-efficient codes. It is shown that switching activity significantly affects the total power and one of the effective methods for reducing switching activity during communication between devices or on-chip communication is the use of low-power coding methods. A method of hierarchical classification of unit distance codes and algorithms for solving step-by-step problems have been developed. The method is based on the invariant approach and construction of a system of different representatives. Estimates of their number have been obtained, characteristics have been determined, and catalogs of typical representatives have been formed. Conclusions. The article analyzes factors that affect dissipated power, and considers the principles of constructing energy-efficient codes. A method of hierarchical classification of single distance codes and algorithms for solving step-by-step problems have been developed, and catalogs of typical representatives have been formed. The application of the developed method will allow developers to analyze and select codes with the best properties and, as a result, obtain better results in terms of network delays, energy costs, and other design limitations for computer systems.

Author Biographies

Yareshchenko Vladyslav, National University "Yuri Kondratyuk" Poltava Polytechnic

PhD student at the Department of Automation, Electronic and Telecommunication

Viktor Kosenko, National University "Yuri Kondratyuk" Poltava Polytechnic

Doctor of Sciences (Engineering), Professor,  Professor at the Department of Automation, Electronic and Telecommunication; Kharkiv National University of Radio Electronics, Professor at the Department of Computer-Integrated Technologies, Automation and Robotics

References

Список літератури

Taha T. B., Barzinjy A. A., Hussain F. H. Nanotechnology and computer science: Trends and advances. Memories-Materials, Devices, Circuits and Systems. 2022. Vol. 2. 100011 р. DOI: https://doi.org/10.1016/j.memori.2022.100011

Samanth R., Nayak S. G., Nempu P. B. A Novel Multiply-Accumulator Unit Bus Encoding Architecture for Image Processing Applications. Iranian Journal of Electrical and Electronic Engineering. 2023. Vol. 19. №. 1. P. 1–11. DOI: https://doi.org/10.22068/IJEEE.19.1.2391

Chennakesavulu M., Prasad T. J., Sumalatha V. Data encoding techniques to improve the performance of system on chip. Journal of King Saud University-Computer and Information Sciences. 2022. Vol. 34. №. 2. P. 492–503. DOI: https://doi.org/10.1016/j.jksuci.2018.12.003

West D. B. Combinatorial mathematics. Cambridge University Press, 2021. 988 p. DOI: 10.1017/9781107415829

Huffman W. C., Kim J. L., Solé P. Concise encyclopedia of coding theory. Chapman and Hall/CRC, 2021. 998 p. DOI: https://doi.org/10.1201/9781315147901

Стоян Ю. Г., Гребенник И. В. Комбинаторные виды для перечисления комбинаторных конфигураций со специальными свойствами. Доп. НАН України. 2010. № 7. С. 28–32. URL: http://dspace.nbuv.gov.ua/handle/123456789/29920

Stanley R. P. Enumerative Combinatorics. Vol.1 second edition. Cambridge studies in advanced mathematics. 2011. 440 p.

Polya G. Mathematics and plausible reasoning, Volume 1: Induction and analogy in mathematics. Princeton University Press, 2020. 296 p.

Charalambides C. A. Enumerative combinatorics. Chapman and Hall/CRC, 2018. 632 p. DOI https://doi.org/10.1201/9781315273112

Strozecki Y. Enumeration complexity. Bulletin of EATCS. 2019. Vol. 3. №. 129. URL: http://bulletin.eatcs.org/index.php/beatcs/article/view/596/605

Lucatero C. R. Combinatorial Enumeration of Graphs. Probability, Combinatorics and Control. London, UK: IntechOpen. 2019. DOI: 10.5772/intechopen.88805

Klazar M. Combinatorial Algebraic Counting. Prague. 2022. 51 p.

Cameron N. T., Nkwanta A. Riordan matrices and lattice path enumeration. Not. Am. Math. Soc. 2023. Vol. 70. P. 231–242. DOI: 10.3390/appliedmath3010012

Zhongmu C. An extension of Burnside theorem. Acta Math. Sinica. 1964. Vol. 14. P. 75–77.

Harary F., Palmer E. M. Graphical enumeration. Elsevier, 2014. 286 p.

De Bruijn N. G. Polya's theory of counting. Applied combinatorical mathematics. 1964. P. 144–184.

Mala F. A. Three Open Problems in Enumerative Combinatorics. Applied Mathematics and Computation. 2023. Vol. 7. № 1. P. 24–27. DOI: 10.26855/jamc.2023.03.004

Shablya Y., Merinov A., Kruchinin D. Combinatorial Generation Algorithms. Mathematics. 2024. Vol. 12. №. 8. P. 1–18. DOI: https://doi.org/10.3390/math12081207

Стоян Ю. Г., Гребенник И. В. Описание классов комбинаторных конфигураций на основе отображений. Доп. НАН України. 2008. № 10. С. 28–31.

Yareshchenko, V., Kosenko, V. Coding to reduce the energy of data movement. Системи управління, навігації та зв’язку. Збірник наукових праць. Полтава: ПНТУ. 2023. V. 1 (71). P. 159–162. DOI: https://doi.org/10.26906/SUNZ.2023.1.159

Ярещенко В.В., Косенко В.В. Кодування з низьким енергоспоживанням. Електронні та мехатронні системи: теорія, інновації, практика: зб. наук. пр. за матеріалами ІХ Всеукр. наук.-практ. конф., 10 листоп. 2023 р. Полтава: Нац. ун-т ім. Юрія Кондратюка, 2023. С. 67–68. URL: https://reposit.nupp.edu.ua/handle/PoltNTU/14093

Zhang, J., Yang, G., Hung, W. N. A canonical-based NPN Boolean matching algorithm utilizing Boolean difference and cofactor signature. IEEE Access. 2017. Vol. 5. С. 27777–27785. DOI 10.1109/ACCESS.2017.2778338

References

Taha, T. B., Barzinjy, A. A., Hussain, F. H. (2022), "Nanotechnology and computer science: Trends and advances". Memories-Materials, Devices, Circuits and Systems. Vol. 2. 100011 р. DOI: https://doi.org/10.1016/j.memori.2022.100011

Samanth, R., Nayak, S. G., Nempu, P. B. (2023), "A Novel Multiply-Accumulator Unit Bus Encoding Architecture for Image Processing Applications". Iranian Journal of Electrical and Electronic Engineering. Vol. 19. No. 1. P. 1–11. DOI: https://doi.org/10.22068/IJEEE.19.1.2391

Chennakesavulu, M., Prasad, T. J., Sumalatha, V. (2022), "Data encoding techniques to improve the performance of system on chip". Journal of King Saud University-Computer and Information Sciences. Vol. 34. No. 2. P. 492–503. DOI: https://doi.org/10.1016/j.jksuci.2018.12.003

West, D. B. (2021), "Combinatorial mathematics". Cambridge University Press. 988p. DOI: 10.1017/9781107415829

Huffman, W. C., Kim, J. L., Solé, P. (2021), "Concise encyclopedia of coding theory". Chapman and Hall/CRC. 998 p. DOI: https://doi.org/10.1201/9781315147901

Stoyan, Yu. G., Grebennik, I. V. (2010), "Combinatorial types for enumeration of combinatorial configurations with special properties". Suppl. NAS of Ukraine. No.7. Р. 28–32. available at: http://dspace.nbuv.gov.ua/handle/123456789/29920

Stanley, R. P. (2011), "Enumerative Combinatorics". Vol. 1 second edition. Cambridge studies in advanced mathematics. 440 p.

Polya, G. (2020), "Mathematics and plausible reasoning, Volume 1: Induction and analogy in mathematics". Princeton University Press. 296 p.

Charalambides, C. A. (2018), "Enumerative combinatorics". Chapman and Hall/CRC. 632 p. DOI: https://doi.org/10.1201/9781315273112

Strozecki, Y. (2019), "Enumeration complexity". Bulletin of EATCS. Vol. 3. No. 129. available at: http://bulletin.eatcs.org/index.php/beatcs/article/view/596/605

Lucatero, C. R. (2019), "Combinatorial Enumeration of Graphs". Probability, Combinatorics and Control. London, UK: IntechOpen. DOI: 10.5772/intechopen.88805

Klazar, M. (2022), "Combinatorial Algebraic Counting". Prague. 51 p.

Cameron, N. T., Nkwanta, A. (2023), "Riordan matrices and lattice path enumeration". Not. Am. Math. Soc. Vol. 70. P. 231–242. DOI: 10.3390/appliedmath3010012

Zhongmu, C. (1964), "An extension of Burnside theorem". Acta Math. Sinica. Vol. 14. P. 75–77.

Harary, F., Palmer, E. M. (2014), "Graphical enumeration". Elsevier. 286 p.

De Bruijn, N. G. (1964), "Polya's theory of counting". Applied combinatorical mathematics. P. 144–184.

Mala, F. A. (2023). "Three Open Problems in Enumerative Combinatorics". Applied Mathematics and Computation. Vol. 7. No. 1. P. 24–27. DOI: 10.26855/jamc.2023.03.004

Shablya, Y., Merinov, A., Kruchinin, D. (2024), "Combinatorial Generation Algorithms". Mathematics. Vol. 12. No. 8. P. 1–18. DOI: https://doi.org/10.3390/math12081207

Stoyan, Yu. G., Grebennik, I. V. (2008), "Description of classes of combinatorial configurations based on mappings". Dop. NAS of Ukraine. No. 10. P. 28–31.

Yareshchenko, V., Kosenko, V. (2023), "Coding to reduce the energy of data movement". Management, navigation and communication systems. Collection of scientific works. Poltava: PNTU. Vol. 1 (71). P. 159–162. DOI: https://doi.org/10.26906/SUNZ.2023.1.159

Yareschenko, V. V., Kosenko, V. V. (2023), "Low energy coding". Electronic and mechatrony systems: theory, innovation, practice: Coll. Sciences. BC according to the materials of IX All -Ukrainian. scientific-practical. conf., 10 November. Poltava: Nat. Univ. Yuri Kondratyuk. P. 67–68. available at: https://reposit.nupp.edu.ua/handle/PoltNTU/14093

Zhang, J., Yang, G., Hung, W. N. (2017), "A canonical-based NPN Boolean matching algorithm utilizing Boolean difference and cofactor signature". IEEE Access. Vol. 5. Р. 27777–27785. DOI: 10.1109/ACCESS.2017.2778338

Published

2024-09-30

How to Cite

Vladyslav, Y., & Kosenko, V. (2024). Low-power coding method in data transmission systems. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (3 (29), 121–129. https://doi.org/10.30837/2522-9818.2024.3.121

Issue

Section

ELECTRONICS, TELECOMMUNICATION SYSTEMS & COMPUTER NETWORKS