Geoinformation technologies for engineering and geodetic surveys in the modernisation of railway infrastructure in Ukraine

Authors

DOI:

https://doi.org/10.30837/2522-9818.2024.4.039

Keywords:

information process; functional modeling; data flows; laser scanning; stages of engineering and geodetic surveys; Leica GIS tools.

Abstract

The subject of the study is remote methods of engineering and geodetic surveys in the modernisation of railway infrastructure in Ukraine. The purpose of the study is to increase the efficiency of engineering and geodetic surveys of railway infrastructure facilities in Ukraine through the use of modern geographic information system technologies. Objectives: To analyse the general state of the railway infrastructure of Ukraine in order to identify possible areas for its improvement; to study the existing regulatory framework governing engineering and geodetic surveys at railway infrastructure facilities during their modernisation; to evaluate the capabilities of modern GIS technologies in solving certain survey tasks; to formalize the processes of field and desk-based surveys; to work out the developed functional models in practice. Results. The results of the activities of JSC "Ukrainian Railways" show that it is the industry leader, but, despite its high development prospects, the modernisation and maintenance of railway infrastructure requires significant funds, which is a significant problem in the context of martial law. This requires the involvement of modern technologies and innovations, in particular, when conducting surveys of railway facilities. The article investigates the possibilities of modern GIS technologies in carrying out engineering and geodetic surveys at railway infrastructure facilities, the links between them, as well as their disadvantages and advantages. The analysis of the current regulatory framework in this area has shown that the use of GIS technologies in surveys is recommended, but not regulated. A DFD diagram has been developed that summarises and formalises the process of integrating materials obtained during surveys using GIS technologies into the country's geodatabase. Based on this diagram, the work of the field and cameral workstages was formalised. The developed functional models were tested empirically, using the example of a project to study the railway track and the surrounding situation on the ground in the direction of Kovel-Yahodyn-Border. It is shown how the proposed models accelerate the planning of such projects. Conclusions: The practical application of the developed functional models increases the efficiency of engineering and geodetic surveys at railway infrastructure facilities. In particular, the systematisation and structuring of data flows, algorithmisation of activities during the field and desk-based stages simplifies the planning of survey projects, increases the information content of the survey materials obtained while reducing the time spent on the work, and improvesthe accuracy of obtaining geometric and geodetic parameters of the area.

Author Biographies

Svitlana Danshyna, National Aerospace University "Kharkiv aviation institute"

Doctor of Sciences (Engineering), , Professor at the Department of Geo-information Technologies and Space Monitoring of the Earth

Sergey Andrieiev, National Aerospace University "Kharkiv aviation institute"

PhD (Engineering Sciences),   Associate Professor at the Department of Geo-information Technologies and Space Monitoring of the Earth

Stanislav Horelyk, National Aerospace University "Kharkiv aviation institute"

PhD (Engineering Sciences),  Associate Professor at the Department of Geo-information Technologies and Space Monitoring of the Earth

Artem Nechausov, National Aerospace University "Kharkiv aviation institute"

PhD  (Engineering Sciences), Associate Professor at the Department of Geo-information Technologies and Space Monitoring of the Earth

Andrii Pryima, National Aerospace University "Kharkiv aviation institute"

Master at the Department of Geo-information Technologies and Space Monitoring of the Earth

References

Список літератури

Дорожня карта використання науки, технологій та інновацій для досягнення цілей Сталого розвитку [Online]. URL: https://mon.gov.ua/storage/app/media/news/2024/01/03/Dorozhnya.karta.vykoryst.nauky.tekhnolohiy.ta.innovatsiy-03.01.2024-1.1.pdf – 5.01.2024.

Про пріоритетні напрями розвитку науки і техніки: Закон України від 11 липня 2001 р., № 2623-IX. Відомості Верховної Ради України. 2001. № 48. Ст. 253 (зі змінами).

Danshyna S., Nechausov A., Andrieiev S. Information technology of transport infrastructure monitoring based on remote sensing data. Radio Electronics, Computer Science, Control. №. 4 (63). 2022. Р. 86 – 97. DOI: https://doi.org/10.15588/1607-3274-2022-4-7

Транспорт України / за ред. І. Петренко. Київ: Державна служба статистики, 2022. 114 с.

Impact of high-speed railway construction on spatial patterns of regional economic development along the route: A case study of the Shanghai–Kunming high-speed railway / Ch. Wang [at el.]. Socio-Economic Planning Sciences. 2023. Vol. 87, Part B. Article 101583. DOI: https://doi.org/10.1016/j.seps.2023.101583

Ren Y., Tian Yu., Xiao X. Spatial effects of transportation infrastructure on the development of urban agglomeration integration: Evidence from the Yangtze River Economic Belt. Journal of Transport Geography. 2022. Vol. 104, Part B. Article 103431. DOI: https://doi.org/10.1016/j.jtrangeo.2022.103431

Zhao J., Guo Yu. Study on the Influence of Chengdu-Chongqing High Speed Railway on the Economic Development of Neijiang City. Procedia Computer Science. 2022. Vol. 199. Р. 858 – 865. DOI: https://doi.org/10.1016/j.procs.2022.01.107

Інформація про Українські залізниці [Online]. URL: https://mtu.gov.ua/content/informaciya-pro-ukrainski-zaliznici.html (дата звернення 25.12.2023).

Даценко В., Гречуха Д. Відбудова залізничного транспорту повоєнної України. Київ: Transparency International Ukraine, 2023. 27 с.

Innovative Trends in Railway Condition Monitoring / I. Bondarenko, V. Lukoševičius, R. Keršys, L. Neduzha. Transportation Research Procedia. 2024. Vol. 77. P. 10 – 17. DOI: https://doi.org/10.1016/j.trpro.2024.01.002

An integrated investigative approach in health monitoring of masonry arch bridges using GPR and InSAR technologies / A.M. Alani [at el.]. NDT & E International. 2020. Vol. 115. Article 102288. DOI: https://doi.org/10.1016/j.ndteint.2020.102288

Integration of InSAR and GPR techniques for monitoring transition areas in railway bridges / F. D'Amico, V. Gagliardi, L. B. Ciampoli, F. Tosti. NDT & E International. 2020. Vol. 115. Article 102291. DOI: https://doi.org/10.1016/j.ndteint.2020.102291

Про топографо-геодезичну та картографічну діяльність: Закон України від 26 січня 1999 р., № 353-ХІV. Офіційний вісник України. 1999. № 3. Ст. 91. С. 2.

ДБН A.2.1-1-2008. Вишукування. Інженерні вишукування для будівництва [На заміну СНиП 1.02.07-87; чинний від 2008-07-01]. Київ: Мінрегіонбуд України, 2008. 76 с.

Developments, challenges, and perspectives of railway inspection robots / G. Jing, X. Qin, H. Wang, Ch. Deng. Automation in Construction. 2022. Vol. 138. Article 104242. DOI: https://doi.org/10.1016/j.autcon.2022.104242

Даншина С.Ю., Андрєєв С.М. Дистанційне зондування як ефективний інструмент проєктування доріг. Авіаційно-космічна техніка і технологія. 2023. № 2. С. 75 – 84. DOI: https://doi.org/10.32620/aktt.2023.2.08

GPR monitoring for road transport infrastructure: A systematic review and machine learning insights / M. Rasol [at el.]. Construction and Building Materials. 2022. Vol. 324. Article 126686. DOI: https://doi.org/10.1016/j.conbuildmat.2022.126686

Butenko O., Horelik S., Zynyuk O. Geospatial data processing characteristics for environmental monitoring tasks. Architecture civil engineering environment. 2020. Vol. 13, Issue1. P. 103 – 114. DOI: https://doi.org/10.21307/ACEE-2020-008

Road extraction in remote sensing data: A survey / Z. Chen [at el.]. International Journal of Applied Earth Observation and Geoinformation. 2022. Vol. 112. Article no. 102833. DOI: https://doi.org/10.1016/j.jag.2022.102833

Eker R. Comparative use of PPK-integrated close-range terrestrial photogrammetry and a handheld mobile laser scanner in the measurement of forest road surface deformation. Measurement. 2023. Vol. 206. Article no. 112322. DOI: https://doi.org/10.1016/j.measurement.2022.112322

An Automatic Road Surface Segmentation in Non-Urban Environments: A 3D Point Cloud Approach with Grid Structure and Shallow Neural Networks / M. Dowajy, Á. J. Somogyi, Á. Barsi, T. Lovas. IEEE Access. 2024. Article no. 3372431. DOI: https://doi.org/10.1109/access.2024.3372431

Про національну інфраструктуру геопросторових даних: Закон України від 13 квітня 2020 р., № 554-ІХ. Відомості Верховної Ради. 2020. № 37. Ст. 277.

GNSS, IMU, camera and LIDAR technology characterization for railway ground truth and digital map generation / O.G. Crespillo [at el.]. Transportation Research Procedia. 2023. Vol. 72. P. 1029 – 1036. DOI: https://doi.org/10.1016/j.trpro.2023.11.532

Kampczyk A., Dybeł K. Integrating surveying railway special grid pins with terrestrial laser scanning targets for monitoring rail transport infrastructure. Measurement. 2021. Vol. 170. Article 108729. DOI: https://doi.org/10.1016/j.measurement.2020.108729

Handbook of Optical and Laser Scanning [Online] / edited by G. F. Marshall, G. E. Stutz. CRC Press, 2018. 778 р. DOI: https://doi.org/10.1201/9781315218243

Leica-PegasusTwoUltimate-DataSheet-0620 [Online]. URL: https://www.gefos-leica.cz/data/original/skenery/mobilni-mapovani/backpack/leica_pegasusbackpack_ds.pdf (дата звернення 15.02.2024).

Leica Cyclone Basic User Manual-01 [Online]. URL: https://www.sdm.co.th/pdf/Cyclone%20Basic%20Tutorial (дата звернення 15.02.2024).

Autodesk AutoCAD Basic User Manual-014 [Online]. URL: https://images.autodesk.com/adsk/files/ (дата звернення 15.02.2024).

Application of Relationship Diagramming Method (RDM) for Resource-constrained Scheduling of Linear Construction Projects / J.U. Maheswari, V. P. Charlesraj, A. Goyal, P. Mujumdar. Procedia Engineering. 2015. Vol. 123. Р. 308 – 315. DOI: https://doi.org/10.1016/j.proeng.2015.10.095

References

Dorozhnia karta vykorystannia nauky, tekhnolohii ta innovatsii dlia dosiahnennia tsilei Staloho rozvytku [A roadmap for the use of science, technology and innovation to achieve the goals of Sustainable Development] available at: https://mon.gov.ua/storage/app/media/news/2024/01/03/Dorozhnya.karta.vykoryst.nauky.tekhnolohiy.ta.innovatsiy-03.01.2024-1.1.pdf (accessed 05.01.2024).

On Priority Branches of Science and Technology Development: Law of Ukraine of 11 July 2001, no. 2623-IX, Vidomosti Verkhovnoi Rady Ukrainy, 2001, no. 48, art. 253 (In Ukrainian).

Danshyna, S., Nechausov, A., Andrieiev, S. (2022), "Information technology of transport infrastructure monitoring based on remote sensing data", Radio Electronics, Computer Science, Control, no. 4 (63), Р. 86 – 97. DOI: https://doi.org/10.15588/1607-3274-2022-4-7

Transport Ukrainy: [Transport of Ukraine] (2022) / edited by I. Petrenko. Kyev : State Statistics Service of Ukraine. (In Ukrainian).

Wang, Ch., Chen, J., Li, B., Chen, N., Wang, W. (2023), "Impact of high-speed railway construction on spatial patterns of regional economic development along the route: A case study of the Shanghai–Kunming high-speed railway", Socio-Economic Planning Sciences, vol. 87, part b, article 101583. DOI: https://doi.org/10.1016/j.seps.2023.101583

Ren Y., Tian, Yu., Xiao, X. (2022), "Spatial effects of transportation infrastructure on the development of urban agglomeration integration: Evidence from the Yangtze River Economic Belt", Journal of Transport Geography, vol. 104, part b, article 103431. DOI: https://doi.org/10.1016/j.jtrangeo.2022.103431

Zhao, J., Guo, Yu. (2022), "Study on the Influence of Chengdu-Chongqing High Speed Railway on the Economic Development of Neijiang City", Procedia Computer Science, Vol. 199, Р. 858 – 865. DOI: https://doi.org/10.1016/j.procs.2022.01.107

Informatsiia pro Ukrainski zaliznytsi [Restoration of railway transport in post-war Ukraine]. available at: https://mtu.gov.ua/content/informaciya-pro-ukrainski-zaliznici.html. (accessed 25.12.2023)

Datsenko, V., Hrechukha, D. (2023), Vidbudova zaliznychnoho transportu povoiennoi Ukrainy: [Restoration of railway transport in post-war Ukraine]. Kyev : Transparency International Ukraine, (In Ukrainian)

Bondarenko, I., Lukoševičius, V., Keršys, R., Neduzha, L. (2024), "Innovative Trends in Railway Condition Monitoring", Transportation Research Procedia, vol. 77, pр. 10 – 17. DOI: https://doi.org/10.1016/j.trpro.2024.01.002

Alani, A. M., Tosti, F., Ciampoli, L. B., Gagliardi, V., Benedetto, A. (2020). "An integrated investigative approach in health monitoring of masonry arch bridges using GPR and InSAR technologies", NDT & E International, Vol. 115, article 102288. DOI: https://doi.org/10.1016/j.ndteint.2020.102288

D'Amico, F., Gagliardi, V., Ciampoli, L. B., Tosti F. (2020), "Integration of InSAR and GPR techniques for monitoring transition areas in railway bridges", NDT & E International, vol. 115, article 102291. DOI: https://doi.org/10.1016/j.ndteint.2020.102291

On Topographic, Geodesic and Cartographic Activity: Law of Ukraine of 26 January 1999, no. 353-ХІV. Ofitsiinyi visnyk Ukrainy, 1999, no. 3, art. 91, 2 р. (In Ukrainian).

Building Code A.2.1-1-2008. Survey. Engineering survey is in building. Kyiv, Ministry of Regional Construction of Ukraine, 2008. 76 p. (In Ukrainian).

Jing, G., Qin, X., Wang, H., Deng, Ch. (2022), "Developments, challenges, and perspectives of railway inspection robots", Automation in Construction, Vol. 138, article 104242. DOI: https://doi.org/10.1016/j.autcon.2022.104242

Danshina, S., Andreev, S. (2023), "Remote sensing as an effective tool for road design", Aviation and space technology and technology, Мo. 2, Р. 75 – 84. DOI: https://doi.org/10.32620/aktt.2023.2.08

Rasol, M., Pais, J. C., Pérez-Gracia, V., Solla, M., Fernandes, F. M., Fontul, S. (2022), "GPR monitoring for road transport infrastructure: A systematic review and machine learning insights", Construction and Building Materials, Vol. 324, article 126686. DOI: https://doi.org/10.1016/j.conbuildmat.2022.126686

Butenko, O., Horelik, S., Zynyuk, O. (2020), "Geospatial data processing characteristics for environmental monitoring tasks", Architecture civil engineering environment, vol. 13, issue1, Р. 103 – 114. DOI: https://doi.org/10.21307/ACEE-2020-008

Chen, Z., Deng, L., Luo, Yu., Li, D., Junior, J.M., Gonсalves, W.N., Nurunnabi, A.A., Li, J., Wang, Ch. (2022), "Road extraction in remote sensing data: A survey", International Journal of Applied Earth Observation and Geoinformation, Vol. 112, article No. 102833. DOI: https://doi.org/10.1016/j.jag.2022.102833

Eker, R. (2023). "Comparative use of PPK-integrated close-range terrestrial photogrammetry and a handheld mobile laser scanner in the measurement of forest road surface deformation", Measurement, Vol. 206, article No. 112322. DOI: https://doi.org/10.1016/j.measurement.2022.112322

Dowajy, M., Somogyi, Á. J., Barsi, Á., Lovas, T. (2024), "An Automatic Road Surface Segmentation in Non-Urban Environments: A 3D Point Cloud Approach with Grid Structure and Shallow Neural Networks", IEEE Access, article no. 3372431. DOI: https://doi.org/10.1109/access.2024.3372431

On National Geospatial Data Infrastructure: Law of Ukraine of 13 April 2020, no. 554-ІХ. Vidomosti Verkhovnoi Rady, 2020, No. 37, art. 227. (In Ukrainian).

Crespillo, O. G., Kliman, A., Neri, A., Vennarini, A., Ruggeri, A., Marais, J., Sabina, S. (2023), "GNSS, IMU, camera and LIDAR technology characterization for railway ground truth and digital map generation", Transportation Research Procedia, 2023, Vol. 72, Р. 1029 – 1036. DOI: https://doi.org/10.1016/j.trpro.2023.11.532

Kampczyk, A., Dybeł, K. "Integrating surveying railway special grid pins with terrestrial laser scanning targets for monitoring rail transport infrastructure", Measurement, 2021, Vol. 170, article 108729. DOI: https://doi.org/10.1016/j.measurement.2020.108729

Handbook of Optical and Laser Scanning (2018) / edited by G.F. Marshall, G.E. Stutz, CRC Press. DOI: https://doi.org/10.1201/9781315218243

Leica-PegasusTwoUltimate-DataSheet-0620. available at: https://www.gefos-leica.cz/data/original/skenery/mobilni-mapovani/backpack/leica_pegasusbackpack_ds.pdf (Accessed 15 February 2024).

Leica Cyclone Basic User Manual-01. available at: https://www.sdm.co.th/pdf/Cyclone%20Basic%20Tutorial (Accessed 15 February 2024).

Autodesk AutoCAD Basic User Manual-014. available at: https://images.autodesk.com/adsk/files/ (Accessed 15 February 2024).

Maheswari, J.U., Charlesraj, V.P., Goyal, A., Mujumdar P. (2015), "Application of Relationship Diagramming Method (RDM) for Resource-constrained Scheduling of Linear Construction Projects", Procedia Engineering, Vol. 123, Р. 308 – 315. DOI: https://doi.org/10.1016/j.proeng.2015.10.095

Published

2024-12-11

How to Cite

Danshyna, S., Andrieiev, S., Horelyk, S., Nechausov, A., & Pryima, A. (2024). Geoinformation technologies for engineering and geodetic surveys in the modernisation of railway infrastructure in Ukraine. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (4(30), 39–58. https://doi.org/10.30837/2522-9818.2024.4.039