Influence of cutting tool vibrations on the surface quality of cut sheet materials and methods for their minimization
DOI:
https://doi.org/10.30837/2522-9818.2025.2.188Keywords:
vibrations, cutting tool, surface quality, sheet materials, wear, vibration minimization.Abstract
The subject of the study is the influence of cutting tool vibrations on the surface quality of cut sheet materials during mechanical processing, as well as the analysis of the mechanisms of vibration occurrence and the development of methods for their minimization to increase the efficiency of technological operations in mechanical engineering. The purpose of the work is to develop scientifically based approaches to predicting the resource of cutting tools and optimizing cutting modes by reducing vibration loads, which will allow to improve the quality of surface processing of sheet materials, reduce production costs and prevent processing defects. Tasks: assessment of the vibration characteristics of the tool depending on the cutting modes and the degree of wear; analysis of the influence of vibrations on surface roughness and defects (waviness, microcracks); development and testing of vibration minimization methods, including damping systems and ultrasonic vibrations; determination of optimal processing conditions for various materials. Methods: experimental analysis using accelerometers for three-axis vibration monitoring; profilometry and microscopy for surface quality assessment; stochastic modeling of tool wear based on statistical data; testing of damping systems (elastic couplings, dampers) and ultrasonic vibrations (20–30 kHz); comparative analysis of the effectiveness of lubricating and cooling fluids. Research results: it was found that vibrations along the X axis have the greatest impact on the formation of surface defects, especially with increasing cutting depth and tool wear; ultrasonic vibrations (22 kHz, amplitude 10 μm) reduce friction and stabilize the cutting process, improving the quality of machined surfaces; damping systems effectively reduce the amplitude of vibrations at critical frequencies (up to 1.5 kHz); the use of water as a coolant turned out to be more effective than copper oil, reducing surface irregularities; an improved model of an end mill with damping elements was developed, which reduces vibration loads and defects when processing thin-sheet materials. Conclusions: the conducted studies show that vibration monitoring is an effective tool for diagnosing the condition of the cutting tool and optimizing the cutting process; the integration of damping systems and ultrasonic vibrations allows you to significantly reduce vibration effects, improve the surface quality of sheet materials and extend the tool life, which contributes to the economic efficiency of production and minimizing processing defects.
References
Список літератури
Бойко Ю. І., Литвиненко О. А., Яновський В. А. Оцінка впливу режимів різання на вібрацію розточувального різця і точність оброблюваних отворів на верстатах з ЧПК. Технічна інженерія. 2020. № 2(86). С. 34–40. DOI: https://doi.org/10.26642/ten-2020-2(86)-34-40
Tsiakoumis V. I. An investigation into vibration assisted machining: Application to surface grinding processes. Doctoral thesis. Liverpool John Moores University. 2011. URL: https://researchonline.ljmu.ac.uk/id/eprint/6113/1/555817.pdf
Rauf A., Khan M. A., Jaffery S. H. I., Butt S. I. Effects of machining parameters, ultrasonic vibrations and cooling conditions on cutting forces and tool wear in meso scale ultrasonic vibrations assisted end-milling (UVAEM) of Ti-6Al-4V under dry, flooded, MQL and cryogenic environments. A statistical analysis. Journal of Materials Research and Technology. 2024. P. 8287–8303. DOI: https://doi.org/10.1016/j.jmrt.2024.05.202
Томашевський О. О., Балицька Н. О. Процес мікрофрезерування металів і сплавів: аналітичний огляд. Технічна інженерія. 2023. № 2(92). С. 74–88. DOI: https://doi.org/10.26642/ten-2023-2(92)-74-88
Chamble P., Bharath M. R., Lokesha K., Ezhil Singh S. C. Machine tool vibration on dimensional accuracy and surface roughness during milling operation of Al6082 with indexable carbide inserts. Journal of Applied Research and Technology. 2020. 18(2). P. 69–76. DOI: https://doi.org/10.22201/icat.24486736e.2020.18.2.999
Zhang C., Cheung C., Bulla B., Zhao C. An investigation of the high-frequency ultrasonic vibration-assisted cutting of steel optical moulds. Micromachines. 2021. 12(4). 460 р. DOI: https://doi.org/10.3390/mi12040460
Химич Г. М., Кущевський М. О. Вібрація як джерело динамічних навантажень. Вісник Хмельницького національного університету. 2014. № 1 (209). С. 36–40.
Степчин Я. А., Отаманський В. В. Аналіз та вдосконалення алгоритмів модульного принципу створення металорізальних верстатів з ЧПК. Технічна інженерія. 2020. № 1(85). С. 23–29. DOI: https://doi.org/10.26642/ten-2020-1(85)-23-29
Сліпчук А. М. Симуляція процесу power skiving для нарізання внутрішнього зубчастого колеса з моделюванням недеформованої стружки. Інформаційні системи, механіка та керування. 2023. № 57. С. 46–58. DOI: https://doi.org/10.23939/istcipa2023.57.046
Makedon V., Myachin V., Plakhotnik O., Fisunenko N., Mykhailenko O. Construction of a model for evaluating the efficiency of technology transfer process based on a fuzzy logic approach. Eastern-European Journal of Enterprise Technologies. 2024. No 2(13(128)). P. 47–57. DOI: https://doi.org/10.15587/1729-4061.2024.300796
Пуховський Є. С. Вплив вібрацій на стійкість багатолезового інструменту. Технічна інженерія. 2022. № 2 (90). С. 44–51. DOI: 10.26642/ten-2022-2(90)-44-51
Kolomy S., Maly M., Sedlak J., Zouhar J., Slany M., Hrabec P., Kouril K. Machinability of extruded H13 tool steel: Effect of cutting parameters on cutting forces, surface roughness, microstructure, and residual stresses. Ain Shams Engineering Journal. 2024. P. 394–407. DOI: https://doi.org/10.1016/j.aej.2024.05.018
Han G., Ye Z., Xu J., Ma Y. Investigation on cutting forces and tool wear in high-speed milling of Ti-6Al-4V assisted by longitudinal torsional ultrasonic vibrations. The International Journal of Advanced Manufacturing Technology. 2023. 129(1–2). P. 1–17. DOI: https://doi.org/10.1007/s00170-023-12306-z
Rigas K., Willers B., Eckert S., Glaser B. Investigations on vibrational interpretations of bubbles in metal-making processes. Metallurgical and Materials Transactions. 2023. № 54. P. 2105–2120. DOI: https://doi.org/10.1007/s11663-023-02820-6
Македон В. В., Холод О. Г., Ярмоленко Л. І. Модель оцінки конкурентоспроможності високотехнологічних підприємств на засадах формування ключових компетенцій. Академічний огляд. 2023. № 2 (59). C. 75–89. DOI: 10.32342/2074-5354-2023-2-59-5
Wang S.M., Tsou W.S., Huang J.W., Chen S.E., Wu C.C. Development of a method and a smart system for tool critical life real-time monitoring. Journal of Manufacturing and Materials Processing. 2024. 8(5). 194 р. https://doi.org/10.3390/jmmp8050194
References
Boiko, Yu. I., Lytvynenko, O. A., Yanovskyi, V. A. (2020), "Evaluation of the influence of cutting regimes on the vibration of the boring tool and the accuracy of machined holes on CNC machines" ["Otsinka vplyvu rezhymiv rizannia na vibratsiiu roztokhuvalnoho rizzia i tochnist obrobliuvanykh otvoriv na verstatakh z ChPK"], Technical Engineering, No. 2(86), P. 34–40. DOI: https://doi.org/10.26642/ten-2020-2(86)-34-40
Tsiakoumis, V. I. (2011), "An investigation into vibration assisted machining: Application to surface grinding processes", Doctoral thesis, Liverpool John Moores University. available at:https://researchonline.ljmu.ac.uk/id/eprint/6113/1/555817.pdf.
Tomashevskyi, O. O., Balytska, N. O. (2023), "Micro-milling process of metals and alloys: analytical review" ["Protses mikrofrezeruvannia metaliv i splaviv: analitychnyi ohliad"], Technical Engineering [Tekhnichna Inzheneriia], No. 2(92), P. 74–88. DOI: https://doi.org/10.26642/ten-2023-2(92)-74-88
Rauf, A., Khan, M. A., Jaffery, S. H. I., Butt, S. I. (2024), "Effects of machining parameters, ultrasonic vibrations and cooling conditions on cutting forces and tool wear in meso scale ultrasonic vibrations assisted end-milling (UVAEM) of Ti-6Al-4V under dry, flooded, MQL and cryogenic environments – A statistical analysis", Journal of Materials Research and Technology. DOI: https://doi.org/10.1016/j.jmrt.2024.05.202
Chamble, P., Bharath, M. R., Lokesha, K., Ezhil Singh, S. C. (2020), "Machine tool vibration on dimensional accuracy and surface roughness during milling operation of Al6082 with indexable carbide inserts", Journal of Applied Research and Technology, Vol. 18, No. 2, P. 69–76. DOI: https://doi.org/10.22201/icat.24486736e.2020.18.2.999
Zhang, C., Cheung, C., Bulla, B., Zhao, C. (2021), "An investigation of the high-frequency ultrasonic vibration-assisted cutting of steel optical moulds", Micromachines, Vol. 12, No. 4, 460 р. DOI:https://doi.org/10.3390/mi12040460
Khimych, H. M., Kushchevskyi, M. O. (2014), "Vibration as a source of dynamic loads" ["Vibratsiia yak dzherelo dynamichnykh navantazhen"], Visnyk Khmelnytskoho natsionalnoho universytetu. [Herald of Khmelnytskyi National University], No. 1(209), P. 36–40.
Stepchyn, Ya. A., Otamanskyi, V. V. (2020), "Analysis and improvement of algorithms of the modular principle for creating CNC machine tools" ["Analiz ta vdoskonalennia alghorytmiv modulnoho pryntsypu stvorennia metalozrizalnykh verstativ z ChPK"], Technical Engineering [Tekhnichna Inzheneriia], No. 1(85), P. 23–29. DOI: https://doi.org/10.26642/ten-2020-1(85)-23-29
Slipchuk, A. M. (2023), "Simulation of the power skiving process for cutting an internal gear with undeformed chip modeling" ["Symuliatsiia protsesu power skiving dlia narizannia vnutrishnoho zubchastoho kolesa z modeliuvanniam nedeformovanoi struzhky"], Information Systems, Mechanics and Control [Informatsiini systemy, mekhanika ta keruvannia], No. 57, P. 46–58. DOI: https://doi.org/10.23939/istcipa2023.57.046
Makedon, V. V., Kholod, O. H., Yarmolenko, L. I. (2023), "Model for assessing the competitiveness of high-tech enterprises based on the formation of key competencies" ["Model otsinky konkurentospromozhnosti vysokotekhnolohichnykh pidpryiemstv na zasadakh formuvannia kliuchovykh kompetentsii"], Academic Review [Akademichnyi ohliad], No. 2(59), P. 75–89. DOI: 10.32342/2074-5354-2023-2-59-5
Pukhovskyi, Ye. S. (2022), "Influence of vibrations on the durability of multi-blade tool" ["Vplyv vibratsii na stiikist bahatolezovoho instrumentu"], Technical Engineering [Tekhnichna Inzheneriia], No. 2(90), P. 44–51. DOI: 10.26642/ten-2022-2(90)-44-51
Kolomy, S., Maly, M., Sedlak, J., Zouhar, J., Slany, M., Hrabec, P., Kouril, K. (2024), "Machinability of extruded H13 tool steel: Effect of cutting parameters on cutting forces, surface roughness, microstructure, and residual stresses", Ain Shams Engineering Journal. P. 394–407. DOI: https://doi.org/10.1016/j.aej.2024.05.018
Han, G., Ye, Z., Xu, J., Ma, Y. (2023), "Investigation on cutting forces and tool wear in high-speed milling of Ti-6Al-4V assisted by longitudinal torsional ultrasonic vibrations", The International Journal of Advanced Manufacturing Technology, Vol. 129, No. 1–2, P. 1–17. DOI: https://doi.org/10.1007/s00170-023-12306-z
Rigas, K., Willers, B., Eckert, S., Glaser, B. (2023), "Investigations on vibrational interpretations of bubbles in metal-making processes", Metallurgical and Materials Transactions. Vol. 54, P. 2105–2120. DOI: https://doi.org/10.1007/s11663-023-02820-6
Makedon, V., Myachin, V., Plakhotnik, O., Fisunenko, N., Mykhailenko, O. (2024), "Construction of a model for evaluating the efficiency of technology transfer process based on a fuzzy logic approach", Eastern-European Journal of Enterprise Technologies, No 2(13(128)), P. 47–57. DOI: https://doi.org/10.15587/1729-4061.2024.300796
Wang, S.-M., Tsou, W.S., Huang, J.W., Chen, S.-E., & Wu, C.-C. (2024), "Development of a method and a smart system for tool critical life real-time monitoring", Journal of Manufacturing and Materials Processing, Vol. 8, No. 5, 194 р. https://doi.org/10.3390/jmmp8050194
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Our journal abides by the Creative Commons copyright rights and permissions for open access journals.
Authors who publish with this journal agree to the following terms:
Authors hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-commercial and non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their published work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.












