Mathematical modeling of the impact of RBC aggregation and deformation parameters on blood rheological properties

Authors

DOI:

https://doi.org/10.30837/2522-9818.2024.4.142

Keywords:

blood viscosity; deformation of erythrocytes; shear modulus; rheological properties of blood.

Abstract

The subject of the research is mathematical modeling of the rheological properties of blood, in particular the influence of basic parameters such as hematocrit, erythrocyte aggregation force, shear modulus and bending stiffness, on changes in blood viscosity. In particular, the relationship between the aggregation and deformation properties of erythrocytes and the rheological behavior of blood under shear flow conditions is analyzed. The purpose of the work is mathematical modeling of the influence of the main physical and biological parameters on the rheological properties of blood using the Dissipative Particle Dynamics (DPD) method and the MS-RBC model. Modeling makes it possible to investigate how changes in the characteristics of erythrocytes affect the viscosity of blood at different shear rates, as well as to develop predictive models for accurate determination of the rheological properties of blood, which is important for the diagnosis and treatment of vascular diseases. Task: description of a mathematical model for the rheological properties of blood, which takes into account changes in hematocrit, erythrocyte aggregation, erythrocyte deformation and shear modulus, use the Dissipative Particle Dynamics method to model the behavior of erythrocytes in blood flow and to study the effect of parameters on blood viscosity at different shear rates . Conduct a sensitivity analysis of key model parameters, such as hematocrit and erythrocyte aggregation force, and determine how changes in these parameters affect the rheological behavior of blood. Methods: Dissipative Particle Dynamics (DPD): Used to model the movement of particles (erythrocytes) in shear flow conditions and to take into account the non-Newtonian behavior of blood. This method allows for a detailed description of the interaction between individual blood components, taking into account their physical and biological characteristics. MS-RBC (Multi-Scale Red Blood Cell) Model is a multi-scale model for describing the mechanical and rheological properties of erythrocytes in the blood flow, which enables the calculation of blood viscosity depending on the shear rate, aggregation of erythrocytes and their deformation. The main results reflect that mathematical modeling of the rheological behavior of blood, which demonstrated that the viscosity of blood largely depends on the mechanical properties of erythrocytes, in particular on the shear modulus and the force of erythrocyte aggregation. The dependence of viscosity on the shear modulus was expressed by a linear equation, which showed an increase in viscosity with an increase in the shear modulus. In addition, the simulation results confirmed that at low shear rates, blood viscosity significantly depends on erythrocyte aggregation, while at high shear rates, the deformation characteristics of erythrocytes are more important. Additionally, the relationship between the model parameter  and the clinical parameter describing the properties of the erythrocyte membrane was considered. The results showed that stiffer erythrocyte membranes lead to increased blood viscosity at high shear rates. Conclusion: Modeling of erythrocyte aggregation and blood viscosity makes it possible to more accurately predict the rheological properties of blood, taking into account the mechanical characteristics of erythrocytes. Developed linear relationships between model parameters and clinical outcomes allow models to be adapted. This makes it possible to more accurately assess the rheological properties of blood, which is important for the diagnosis and treatment of various vascular diseases associated with erythrocyte aggregation disorders.

Author Biography

Vladyslav Sniadovskyi, Vinnytsia National Technical University

PhD Student at the Department of Biomedical Engineering and Optical-Electronic Systems

References

Список літератури

Cho Y. I., Mooney M. P., Cho D. J. Hemorheological disorders in diabetes mellitus. J Diabetes Sci Technol. 2008. №2(6). С. 1130–1138. DOI: 10.1177/193229680800200622

Maier C. L. COVID-19-associated hyperviscosity: a link between inflammation and thrombophilia? / Maier C. L. та ін. Lancet. 2020. №395(10239). С. 1758–1759. DOI: 10.1016/S0140-6736(20)31209-5

Chien S. Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. / Chien S., та ін. J Appl Physiol. 1966. №21(1). С. 81–87. DOI: 10.1152/jappl.1966.21.1.81

Chien S. Red cell deformability and its relevance to blood flow. Annu Rev Physiol. 1987. №49. С. 177–192. DOI: 10.1146/annurev.ph.49.030187.001141

Suresh S. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. / Suresh S. та ін. Acta Biomater. 2005. №1(1). С. 15–30. DOI: 10.1016/j.actbio.2004.09.001

Shelby J. P A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. / Shelby J. P. та ін. Proc Natl Acad Sci USA. 2003. №100(25). С. 14618–14622. DOI: 10.1073/pnas.2433968100

Flormann D. On the rheology of red blood cell suspensions with different amounts of dextran: separating the effect of aggregation and increase in viscosity of the suspending phase. / Flormann D. та ін. Rheologica Acta. 2016. №55. С. 477–483.

Baskurt O. K., Meiselman H. J., Cellular determinants of low-shear blood viscosity. Biorheology. 1997. №34(3). С. 235–247. DOI: 10.1016/S0006-355X(97)00027-9

Fedosov D. A. Computational biorheology of human blood flow in health and disease. / Fedosov D. A. та ін. Ann Biomed Eng. 2014. №42(2). С. 368–387. DOI: 10.1007/s10439-013-0922-3

Li X., Vlahovska P. M., Karniadakis G. E. Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter. 2013. №9(1). С. 28–37. DOI: 10.1039/C2SM26891D

Ye T., Phan-Thien N., Lim C. T. Particle-based simulations of red blood cells – A review. J Biomech. 2016. №49 (11). С. 2255–2266. DOI: 10.1016/j.jbiomech.2015.11.050

Han K. In silico modeling of patient-specific blood rheology in type 2 diabetes mellitus. / Han K. та ін. Biophys J. 2023. №122(8). С. 1445–1458. DOI: 10.1016/j.bpj.2023.03.010

Hoogerbrugge P. J., J. M. V. A Koelman., Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters. 1992. №19(3). С. 155.

Pan W., Caswell B., Karniadakis G. E., Rheology, microstructure and migration in Brownian colloidal suspensions. Langmuir. 2010. №26(1). С. 133–142. DOI: 10.1021/la902205x

Mai-Duy N. Coarse-graining, compressibility, and thermal fluctuation scaling in dissipative particle dynamics employed with pre-determined input parameters. / Mai-Duy N. та ін. Physics of Fluids. 2020. №32(5).

Fedosov D. A. Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation. / Fedosov D. A. та ін. Proc Natl Acad Sci USA. 2011. №108(1). С. 35–39. DOI: 10.1073/pnas.1009492108

Fedosov D. A. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. / Fedosov D. A. та ін. Biophys J. 2010. №98(10). С. 2215–2225. DOI: 10.1016/j.bpj.2010.02.002.

Fedosov D. A. Predicting human blood viscosity in silico. / Fedosov D. A. та ін. Proc Natl Acad Sci USA. 2011. №108(29). С. 11772–11777. DOI: 10.1073/pnas.1101210108

Lei H., Karniadakis G. E. Quantifying the rheological and hemodynamic characteristics of sickle cell anemia. Biophys J. 2012. №102(2). С. 185–194. DOI: 10.1016/j.bpj.2011.12.006

References

Cho, Y. I., Mooney, M. P., Cho, D. J. (2008), "Hemorheological disorders in diabetes mellitus," J Diabetes Sci Technol, 2(6), Р. 1130–1138. DOI: 10.1177/193229680800200622

Maier, C. L., Truong, A. D., Auld, S. C., Polly, D. M., Tanksley, C. L., Duncan, A. (2020), "COVID-19-associated hyperviscosity: a link between inflammation and thrombophilia?", Lancet, 395(10239), Р. 1758–1759. DOI: 10.1016/S0140-6736(20)31209-5

Chien, S., Usami, S., Taylor, H. M., Lundberg, J. L., Gregersen, M. I. (1966), "Effects of hematocrit and plasma proteins on human blood rheology at low shear rates," J Appl Physiol, 21(1), Р. 81–87. DOI: 10.1152/jappl.1966.21.1.81

Chien, S. (1987), "Red cell deformability and its relevance to blood flow," Annu Rev Physiol, 49, Р. 177–192. DOI: 10.1146/annurev.ph.49.030187.001141

Suresh, S., Spatz, J., Mills, J. P., Micoulet, A., Dao, M., Lim, C. T., Beil, M., Seufferlein, T. (2005), "Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria," Acta Biomater, 1(1), Р. 15–30. DOI: 10.1016/j.actbio.2004.09.001

Shelby, J. P., White, J., Ganesan, K., Rathod, P. K., Chiu, D. T. (2003), "A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes," Proc Natl Acad Sci USA, 100(25), Р. 14618–14622. DOI: 10.1073/pnas.2433968100

Flormann, D., et al. (2016), "On the rheology of red blood cell suspensions with different amounts of dextran: separating the effect of aggregation and increase in viscosity of the suspending phase," Rheologica Acta, 55, Р. 477–483.

Baskurt, O. K., Meiselman, H. J. (1997), "Cellular determinants of low-shear blood viscosity," Biorheology, 34(3), Р. 235–247. DOI: 10.1016/S0006-355X(97)00027-9

Fedosov, D. A., Dao, M., Karniadakis, G. E., Suresh, S. (2014), "Computational biorheology of human blood flow in health and disease," Ann Biomed Eng, 42(2), Р. 368–387. DOI: 10.1007/s10439-013-0922-3

Li, X., Vlahovska, P. M., Karniadakis, G. E. (2013), "Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease," Soft Matter, 9(1), Р. 28–37. DOI: 10.1039/C2SM26891D

Ye, T., Phan-Thien, N., Lim, C. T. (2016), "Particle-based simulations of red blood cells: A review," J Biomech, 49(11), Р. 2255–2266. DOI: 10.1016/j.jbiomech.2015.11.050

Han, K., Ma, S., Sun, J., Xu, M., Qi, X., Wang, S., Li, L., Li, X. (2023), "In silico modeling of patient-specific blood rheology in type 2 diabetes mellitus," Biophys J, 122(8), Р. 1445–1458. DOI: 10.1016/j.bpj.2023.03.010

Hoogerbrugge, P. J., Koelman, J. M. V. A. (1992), "Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics," Europhysics Letters, 19(3), 155 р.

Pan, W., Caswell, B., Karniadakis, G. E. (2010), "Rheology, microstructure, and migration in Brownian colloidal suspensions," Langmuir, 26(1), Р. 133–142. DOI: 10.1021/la902205x

Mai-Duy, N., et al. (2020), "Coarse-graining, compressibility, and thermal fluctuation scaling in dissipative particle dynamics employed with pre-determined input parameters," Physics of Fluids, 32(5).

Fedosov, D. A., Caswell, B., Suresh, S., Karniadakis, G. E. (2011), "Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation," Proc Natl Acad Sci USA, 108(1), Р. 35–39. DOI: 10.1073/pnas.1009492108

Fedosov, D. A., Caswell, B., Karniadakis, G. E. (2010), "A multiscale red blood cell model with accurate mechanics, rheology, and dynamics," Biophys J, 98(10), Р. 2215–2225. DOI: 10.1016/j.bpj.2010.02.002

Fedosov, D. A., Pan, W., Caswell, B., Gompper, G., Karniadakis, G. E. (2011), "Predicting human blood viscosity in silico," Proc Natl Acad Sci USA, 108(29), Р. 11772–11777. DOI: 10.1073/pnas.1101210108

Lei, H., Karniadakis, G. E. (2012), "Quantifying the rheological and hemodynamic characteristics of sickle cell anemia," Biophys J, 102(2), Р. 185–194. DOI: 10.1016/j.bpj.2011.12.006

Published

2024-12-11

How to Cite

Sniadovskyi, V. (2024). Mathematical modeling of the impact of RBC aggregation and deformation parameters on blood rheological properties. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (4(30), 142–152. https://doi.org/10.30837/2522-9818.2024.4.142