Mathematical modeling of the impact of RBC aggregation and deformation parameters on blood rheological properties
DOI:
https://doi.org/10.30837/2522-9818.2024.4.142Keywords:
blood viscosity; deformation of erythrocytes; shear modulus; rheological properties of blood.Abstract
The subject of the research is mathematical modeling of the rheological properties of blood, in particular the influence of basic parameters such as hematocrit, erythrocyte aggregation force, shear modulus and bending stiffness, on changes in blood viscosity. In particular, the relationship between the aggregation and deformation properties of erythrocytes and the rheological behavior of blood under shear flow conditions is analyzed. The purpose of the work is mathematical modeling of the influence of the main physical and biological parameters on the rheological properties of blood using the Dissipative Particle Dynamics (DPD) method and the MS-RBC model. Modeling makes it possible to investigate how changes in the characteristics of erythrocytes affect the viscosity of blood at different shear rates, as well as to develop predictive models for accurate determination of the rheological properties of blood, which is important for the diagnosis and treatment of vascular diseases. Task: description of a mathematical model for the rheological properties of blood, which takes into account changes in hematocrit, erythrocyte aggregation, erythrocyte deformation and shear modulus, use the Dissipative Particle Dynamics method to model the behavior of erythrocytes in blood flow and to study the effect of parameters on blood viscosity at different shear rates . Conduct a sensitivity analysis of key model parameters, such as hematocrit and erythrocyte aggregation force, and determine how changes in these parameters affect the rheological behavior of blood. Methods: Dissipative Particle Dynamics (DPD): Used to model the movement of particles (erythrocytes) in shear flow conditions and to take into account the non-Newtonian behavior of blood. This method allows for a detailed description of the interaction between individual blood components, taking into account their physical and biological characteristics. MS-RBC (Multi-Scale Red Blood Cell) Model is a multi-scale model for describing the mechanical and rheological properties of erythrocytes in the blood flow, which enables the calculation of blood viscosity depending on the shear rate, aggregation of erythrocytes and their deformation. The main results reflect that mathematical modeling of the rheological behavior of blood, which demonstrated that the viscosity of blood largely depends on the mechanical properties of erythrocytes, in particular on the shear modulus and the force of erythrocyte aggregation. The dependence of viscosity on the shear modulus was expressed by a linear equation, which showed an increase in viscosity with an increase in the shear modulus. In addition, the simulation results confirmed that at low shear rates, blood viscosity significantly depends on erythrocyte aggregation, while at high shear rates, the deformation characteristics of erythrocytes are more important. Additionally, the relationship between the model parameter and the clinical parameter describing the properties of the erythrocyte membrane was considered. The results showed that stiffer erythrocyte membranes lead to increased blood viscosity at high shear rates. Conclusion: Modeling of erythrocyte aggregation and blood viscosity makes it possible to more accurately predict the rheological properties of blood, taking into account the mechanical characteristics of erythrocytes. Developed linear relationships between model parameters and clinical outcomes allow models to be adapted. This makes it possible to more accurately assess the rheological properties of blood, which is important for the diagnosis and treatment of various vascular diseases associated with erythrocyte aggregation disorders.
References
Список літератури
Cho Y. I., Mooney M. P., Cho D. J. Hemorheological disorders in diabetes mellitus. J Diabetes Sci Technol. 2008. №2(6). С. 1130–1138. DOI: 10.1177/193229680800200622
Maier C. L. COVID-19-associated hyperviscosity: a link between inflammation and thrombophilia? / Maier C. L. та ін. Lancet. 2020. №395(10239). С. 1758–1759. DOI: 10.1016/S0140-6736(20)31209-5
Chien S. Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. / Chien S., та ін. J Appl Physiol. 1966. №21(1). С. 81–87. DOI: 10.1152/jappl.1966.21.1.81
Chien S. Red cell deformability and its relevance to blood flow. Annu Rev Physiol. 1987. №49. С. 177–192. DOI: 10.1146/annurev.ph.49.030187.001141
Suresh S. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. / Suresh S. та ін. Acta Biomater. 2005. №1(1). С. 15–30. DOI: 10.1016/j.actbio.2004.09.001
Shelby J. P A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. / Shelby J. P. та ін. Proc Natl Acad Sci USA. 2003. №100(25). С. 14618–14622. DOI: 10.1073/pnas.2433968100
Flormann D. On the rheology of red blood cell suspensions with different amounts of dextran: separating the effect of aggregation and increase in viscosity of the suspending phase. / Flormann D. та ін. Rheologica Acta. 2016. №55. С. 477–483.
Baskurt O. K., Meiselman H. J., Cellular determinants of low-shear blood viscosity. Biorheology. 1997. №34(3). С. 235–247. DOI: 10.1016/S0006-355X(97)00027-9
Fedosov D. A. Computational biorheology of human blood flow in health and disease. / Fedosov D. A. та ін. Ann Biomed Eng. 2014. №42(2). С. 368–387. DOI: 10.1007/s10439-013-0922-3
Li X., Vlahovska P. M., Karniadakis G. E. Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter. 2013. №9(1). С. 28–37. DOI: 10.1039/C2SM26891D
Ye T., Phan-Thien N., Lim C. T. Particle-based simulations of red blood cells – A review. J Biomech. 2016. №49 (11). С. 2255–2266. DOI: 10.1016/j.jbiomech.2015.11.050
Han K. In silico modeling of patient-specific blood rheology in type 2 diabetes mellitus. / Han K. та ін. Biophys J. 2023. №122(8). С. 1445–1458. DOI: 10.1016/j.bpj.2023.03.010
Hoogerbrugge P. J., J. M. V. A Koelman., Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters. 1992. №19(3). С. 155.
Pan W., Caswell B., Karniadakis G. E., Rheology, microstructure and migration in Brownian colloidal suspensions. Langmuir. 2010. №26(1). С. 133–142. DOI: 10.1021/la902205x
Mai-Duy N. Coarse-graining, compressibility, and thermal fluctuation scaling in dissipative particle dynamics employed with pre-determined input parameters. / Mai-Duy N. та ін. Physics of Fluids. 2020. №32(5).
Fedosov D. A. Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation. / Fedosov D. A. та ін. Proc Natl Acad Sci USA. 2011. №108(1). С. 35–39. DOI: 10.1073/pnas.1009492108
Fedosov D. A. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. / Fedosov D. A. та ін. Biophys J. 2010. №98(10). С. 2215–2225. DOI: 10.1016/j.bpj.2010.02.002.
Fedosov D. A. Predicting human blood viscosity in silico. / Fedosov D. A. та ін. Proc Natl Acad Sci USA. 2011. №108(29). С. 11772–11777. DOI: 10.1073/pnas.1101210108
Lei H., Karniadakis G. E. Quantifying the rheological and hemodynamic characteristics of sickle cell anemia. Biophys J. 2012. №102(2). С. 185–194. DOI: 10.1016/j.bpj.2011.12.006
References
Cho, Y. I., Mooney, M. P., Cho, D. J. (2008), "Hemorheological disorders in diabetes mellitus," J Diabetes Sci Technol, 2(6), Р. 1130–1138. DOI: 10.1177/193229680800200622
Maier, C. L., Truong, A. D., Auld, S. C., Polly, D. M., Tanksley, C. L., Duncan, A. (2020), "COVID-19-associated hyperviscosity: a link between inflammation and thrombophilia?", Lancet, 395(10239), Р. 1758–1759. DOI: 10.1016/S0140-6736(20)31209-5
Chien, S., Usami, S., Taylor, H. M., Lundberg, J. L., Gregersen, M. I. (1966), "Effects of hematocrit and plasma proteins on human blood rheology at low shear rates," J Appl Physiol, 21(1), Р. 81–87. DOI: 10.1152/jappl.1966.21.1.81
Chien, S. (1987), "Red cell deformability and its relevance to blood flow," Annu Rev Physiol, 49, Р. 177–192. DOI: 10.1146/annurev.ph.49.030187.001141
Suresh, S., Spatz, J., Mills, J. P., Micoulet, A., Dao, M., Lim, C. T., Beil, M., Seufferlein, T. (2005), "Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria," Acta Biomater, 1(1), Р. 15–30. DOI: 10.1016/j.actbio.2004.09.001
Shelby, J. P., White, J., Ganesan, K., Rathod, P. K., Chiu, D. T. (2003), "A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes," Proc Natl Acad Sci USA, 100(25), Р. 14618–14622. DOI: 10.1073/pnas.2433968100
Flormann, D., et al. (2016), "On the rheology of red blood cell suspensions with different amounts of dextran: separating the effect of aggregation and increase in viscosity of the suspending phase," Rheologica Acta, 55, Р. 477–483.
Baskurt, O. K., Meiselman, H. J. (1997), "Cellular determinants of low-shear blood viscosity," Biorheology, 34(3), Р. 235–247. DOI: 10.1016/S0006-355X(97)00027-9
Fedosov, D. A., Dao, M., Karniadakis, G. E., Suresh, S. (2014), "Computational biorheology of human blood flow in health and disease," Ann Biomed Eng, 42(2), Р. 368–387. DOI: 10.1007/s10439-013-0922-3
Li, X., Vlahovska, P. M., Karniadakis, G. E. (2013), "Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease," Soft Matter, 9(1), Р. 28–37. DOI: 10.1039/C2SM26891D
Ye, T., Phan-Thien, N., Lim, C. T. (2016), "Particle-based simulations of red blood cells: A review," J Biomech, 49(11), Р. 2255–2266. DOI: 10.1016/j.jbiomech.2015.11.050
Han, K., Ma, S., Sun, J., Xu, M., Qi, X., Wang, S., Li, L., Li, X. (2023), "In silico modeling of patient-specific blood rheology in type 2 diabetes mellitus," Biophys J, 122(8), Р. 1445–1458. DOI: 10.1016/j.bpj.2023.03.010
Hoogerbrugge, P. J., Koelman, J. M. V. A. (1992), "Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics," Europhysics Letters, 19(3), 155 р.
Pan, W., Caswell, B., Karniadakis, G. E. (2010), "Rheology, microstructure, and migration in Brownian colloidal suspensions," Langmuir, 26(1), Р. 133–142. DOI: 10.1021/la902205x
Mai-Duy, N., et al. (2020), "Coarse-graining, compressibility, and thermal fluctuation scaling in dissipative particle dynamics employed with pre-determined input parameters," Physics of Fluids, 32(5).
Fedosov, D. A., Caswell, B., Suresh, S., Karniadakis, G. E. (2011), "Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation," Proc Natl Acad Sci USA, 108(1), Р. 35–39. DOI: 10.1073/pnas.1009492108
Fedosov, D. A., Caswell, B., Karniadakis, G. E. (2010), "A multiscale red blood cell model with accurate mechanics, rheology, and dynamics," Biophys J, 98(10), Р. 2215–2225. DOI: 10.1016/j.bpj.2010.02.002
Fedosov, D. A., Pan, W., Caswell, B., Gompper, G., Karniadakis, G. E. (2011), "Predicting human blood viscosity in silico," Proc Natl Acad Sci USA, 108(29), Р. 11772–11777. DOI: 10.1073/pnas.1101210108
Lei, H., Karniadakis, G. E. (2012), "Quantifying the rheological and hemodynamic characteristics of sickle cell anemia," Biophys J, 102(2), Р. 185–194. DOI: 10.1016/j.bpj.2011.12.006
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Our journal abides by the Creative Commons copyright rights and permissions for open access journals.
Authors who publish with this journal agree to the following terms:
Authors hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-commercial and non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their published work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.












