Методология решения задач размещения многомерных шаров

Авторы

  • G. N. Yaskov Институт проблем машиностроения им. А. Н. Подгорного НАН Украины (61046, Украина, г. Харьков, ул. Пожарского, 2/10), Ukraine https://orcid.org/0000-0002-1476-1818

Ключевые слова:

шар, гипершар, упаковка шаров, задача о рюкзаке, задача с переменным размером, нелинейная оптимизация

Аннотация

В статье рассматривается задача оптимального размещения шаров различной размерности в контейнерах произвольных геометрических форм. Согласно международной классификации эта задача относится к классу SPP (Sphere Packing Problems). Она заключается в размещении набора шаров (кругов, гипершаров) заданных радиусов в контейнере с заданными метрическими характеристиками. Целью данной работы является создание единой методологии решения задач SPP. Приведены основные постановки задачи: в виде задачи о рюкзаке; задачи с переменным размером контейнера и соответствующие математические модели. На выбор стратегии решения влияют вид постановки задачи, размерность пространства, в котором размещаются шары, метрические особенности шаров (равные или неравные), их количество, геометрическая форма контейнера, наличие технологических ограничений, ограничение на время счета. Структурными элементами методологии являются математические модели, способы построения начальных размещений, методы локальной и глобальной оптимизации. При разработке метода решения используется построение начальных допустимых размещений случайным, решетчатым способами, с помощью жадного алгоритма и путем решения вспомогательной задачи нелинейного программирования. В качестве методов локальной оптимизации рассматриваются модификации метода возможных направлений, метод внутренней точки, метод множителей Лагранжа и метод оптимизации по группам переменных. Для глобальной оптимизации используются метод перебора подмножеств шаров из заданного набора, метод перебора крайних точек области допустимых решений, реализованные с помощью алгоритма ветвей и границ, модификации методов сужающихся окрестностей, метод плавного перехода из одного локального минимума в другой на основе увеличения размерности задачи путем введения дополнительных переменных метрических характеристик, метод решения, реализованный в виде последовательности задач нелинейного программирования возрастающей размерности, метод мультистарта. Предложены стратегии решения задачи SPP для различных ее постановок.

Биография автора

G. N. Yaskov, Институт проблем машиностроения им. А. Н. Подгорного НАН Украины (61046, Украина, г. Харьков, ул. Пожарского, 2/10)

Кандидат технических наук

Библиографические ссылки

Stoyan, Yu. G. & Yakovlev, S. V. (1986). Matematicheskiye modeli i optimizatsionnyye metody geometricheskogo proyektirovaniya [Mathematical models and optimisation methods of geometric design]. Kiyev: Naukova Dumka, 268 p. (in Russian).

Waescher, G. & Haussner, H. (2007). An improved typology of cutting and packing problems. European Journal of Operational Research, vol. 183, iss. 5, pp. 1109–1130. https://doi.org/10.1016/j.ejor.2005.12.047

Hifi, M. & M'Hallah, R. (2009). A. literature review on circle and sphere packing problems: models and methodologies. Advances in Operations Research, vol. 2009, pp. 1–22. https://doi.org/10.1155/2009/150624

Snoj, L. & Ravnik, M. (2006). Effect of packing fraction variations on the multiplication factor in pebble-bed nuclear reactors. Kerntechnik, vol. 71, no. 4, pp. 208–213. https://doi.org/10.3139/124.100295

Leary, M., Merli, L., Torti, F., Mazur, M., & Brandt, M. (2014). Optimal topology for additive manufacture: A method for enabling additive manufacture of support-free optimal structures. Materials and Design, vol. 63, pp. 678–690. https://doi.org/10.1016/j.matdes.2014.06.015

Blyuss, O., Koriashkina, L., Kiseleva, E., & Molchanov, R. (2015). Optimal Placement of Irradiation Sources in the Planning of Radiotherapy: Mathematical Models and Methods of Solving. Computational and Mathematical Methods in Medicine, vol. 2015, pp. 1–8. https://doi.org/10.1155/2015/142987

Agapie, S. C. & Whitlock, P. A. (2010). Random packing of hyperspheres and Marsaglia's parking lot test. Monte Carlo Methods and Applications, vol. 16, iss. 3–4, pp. 197–209. https://doi.org/10.1515/mcma.2010.019

Conway, J. H. & Sloane, N. J. (1999). A sphere packings, lattices, and groups. New York: Springer-Verlag, 706 p. https://doi.org/10.1007/978-1-4757-6568-7

Torquato, S. & Stillinger, F. H. (2006). Exactly solvable disordered sphere-packing model in arbitrary-dimensional Euclidean spaces. Physical Review E, vol. 73, iss. 3, 031106. https://doi.org/10.1103/PhysRevE.73.031106

Hifi, M. & Yousef, L. (2015). A dichotomous search-based heuristic for the three-dimensional packing problem. Cogent Engineering, vol. 2 (1), pp. 1–15. https://doi.org/10.1080/23311916.2014.994257

Zeng, Z., Yu, X., He, K., Huang, W., & Fu, Z. (2016). Iterated tabu search and variable neighborhood descent for packing unequal circles into a circular container. European Journal of Operational Research, vol. 250, iss. 2, pp. 615–627. https://doi.org/10.1016/j.ejor.2015.09.001

Sutou, A. & Dai, Y. (2002). Global Optimization Approach to Unequal Global Optimization Approach to Unequal Sphere Packing Problems in 3D. Journal of Optimization Theory and Applications, vol. 114, iss. 3, pp. 671–694. https://doi.org/10.1023/A:1016083231326

Zeng, Z. Z, Huang, W. Q., Xu, R. C., & Fu, Z. H. (2012). An algorithm to packing unequal spheres in a larger sphere. Advanced Materials Research, vol. 546–547, pp. 1464–1469. https://doi.org/10.4028/www.scientific.net/AMR.546-547.1464

Kubach, T., Bortfeldt, A., Tilli, T., & Gehring, H. (2011). Greedy algorithms for packing unequal spheres into a cuboidal strip or a cuboid. Asia-Pacific Journal of Operational Research, vol. 28, no. 06, pp. 739–753. https://doi.org/10.1142/S0217595911003326

Birgin, E. G. & Sobral, F. N. C. (2008). Minimizing the object dimensions in circle and sphere packing problems. Computers & Operations Research, vol. 35, iss. 7, pp. 2357–2375. https://doi.org/10.1016/j.cor.2006.11.002

Stoyan, Yu. & Yaskov, G. (2012). Packing congruent hyperspheres into a hypersphere. Journal of Global Optimization, vol. 52, iss. 4, pp. 855–868. https://doi.org/10.1007/s10898-011-9716-z

Yakovlev, S. V., Yaskov, G. N., & Korobchinskiy, K. P. (2017). O metodakh peremennogo radiusa v zadache upakovki sharov v konteynery. [On variable radius methods in problems of packing spheres into containers]. Pytannia prykl. matematyky i mat. modeliuvannia: zb. nauk. pr. − Problems of Applied Mathematics and Mathematical Modeling. Collection of scientific papers, Dnirpo: LIRA, iss. 17, pp. 265−272 (in Russian).

Stoyan, Yu. G., Scheithauer, G., & Yaskov, G. N. (2016). Packing unequal spheres into various containers. Cybernetics and Systems Analysis, vol. 52, iss. 3, pp. 419−426. https://doi.org/10.1007/s10559-016-9842-1

Yaskov, G. N. (2014). Packing non-equal hyperspheres into a hypersphere of minimal radius. Journal of Mechanical Engineering, vol. 17, no. 1, pp. 48–53.

Stoyan, Y. & Yaskov, G. (1998). Mathematical model and solution method of optimization problem of placement of rectangles and circles taking into account special constraints. International Transactions in Operational Research, vol. 5, no. 1, pp. 45–57. https://doi.org/10.1111/j.1475-3995.1998.tb00101.x

Visscher, W. M. & Bolsterli, M. (1972). Random packing of equal and unequal spheres in two and three dimensions. Nature, vol. 239, pp. 504–507. https://doi.org/10.1038/239504a0

Mueller, G. E. (2005). Numerically packing spheres in cylinders. Powder Technology, vol. 159, iss. 2, pp. 105–110. https://doi.org/10.1016/j.powtec.2005.06.002

Yaskov, G. N. (2009). Upakovka bolshogo chisla kongruentnykh krugov v tsilindre [Packing a great number of spheres into a cylinder]. Dopov. Nac. akad. nauk Ukr. −Reports of the National Academy of Sciences of Ukraine, no. 12, pp. 43–49 (in Russian).

Chernov, N., Stoyan, Yu., & Romanova, T. (2015). Mathematical model and efficient algorithms for object packing problem. Computational Geometry, vol. 43, iss. 5, pp. 535–553. https://doi.org/10.1016/j.comgeo.2009.12.003

Stoyan, Y., Pankratov, A., & Romanova, T. (2016). Quasi-phi-functions and optimal packing of ellipses. Journal of Global Optimization, vol. 65, iss. 2, pp. 283–307. https://doi.org/10.1007/s10898-015-0331-2

Stoyan, Y. & Yaskov, G. (2012). Packing equal circles into a circle with circular prohibited areas. International Journal of Computer Mathematics, vol. 89, iss. 10, pp. 1355–1369. https://doi.org/10.1080/00207160.2012.685468

Yaskov, G. N. (2010). Metod resheniya zadachi razmeshcheniya raznykh krugov s perspektivnym vyborom nachalnykh tochek [Method of solving the problem of packing different circles with choice of perspective initial points]. Zb. nauk. prats Kharkivskogo universitetu povitryanyh syl − Scientific Works of Kharkov National Air Force University, iss. 3, no. 25, pp. 119−122 (in Russian).

Wächter, A. & Biegler, L. T. (2006). On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Mathematical Programming, vol. 106, iss. 1, pp. 25–57. https://doi.org/10.1007/s10107-004-0559-y

Stoyan, Yu. & Yaskov, G. (2014). Packing unequal circles into a strip of minimal length with a jump algorithm. Optimization Letters, vol. 8, iss. 3, pp. 949–970. https://doi.org/10.1007/s11590-013-0646-1

Yaskov, G. N. (2008). Random packing of identical spheres into a cylindrical container. Systemy obrobky informatsii, iss. 1, no. 68, pp. 128−130.

Stoyan, Y. & Chugay, A. (2009). Packing cylinders and rectangular parallelepipeds with distances between them into a given region. European Journal of Operational Research, vol. 197, iss. 2, pp. 446–455. https://doi.org/10.1016/j.ejor.2008.07.003

Gondzio, J. (1995). HOPDM (version 2.12) – a fast LP solver based on a primal-dual interior point method. European Journal of Operational Research, vol. 85, iss. 1, pp. 221–225. https://doi.org/10.1016/0377-2217(95)00163-K

Meszaros, C. (2008). On numerical issues of interior point methods. SIAM Journal on Matrix Analysis and Applications, vol. 30, iss. 1, pp. 223–235. https://doi.org/10.1137/050633354

Torquato, S., Uche, O. U., & Stillinger, F. H. (2006). Random sequential addition of hard spheres in high Euclidean dimensions. Physical Review E, vol. 74, iss. 6, pp. 061308. https://doi.org/10.1103/PhysRevE.74.061308

Stoyan, Y., Scheithauer, G., & Yaskov, G. (2003). Packing of various radii solid spheres into a parallelepiped. Central European Journal of Operations Research, vol. 11, no. 4, pp. 389–407.

Stoyan, Y. & Yaskov, G. (2008). Packing identical spheres into a rectangular parallelepiped. In: Bortfeldt, A., Homberger, J., Kopfer, H., Pankratz, G., & Strangmeier, R. (eds) Intelligent Decision Support. Gabler, pp. 47–67. https://doi.org/10.1007/978-3-8349-9777-7_4

Yaskov, G. N. (2007). Derevo resheniy dlya zadachi razmeshcheniya neravnykh sharov v share zadannogo radiusa. Informatsiini systemy i tekhnologii IST-2017: pr 6-i mizhnar. nauk.-tekhn. konf. (Kobleve, 11–16 ver. 2017) [Solution tree for the problem of packing unequal spheres in a sphere of a given radius. Informational systems and technologies IST-2017: Proceedings of 6th int. sc. and techn. seminar]. Kobleve, pp. 143–144 (in Russian).

Загрузки

Опубликован

2019-03-19

Выпуск

Раздел

Прикладная математика