Оптимальное проектирование изгибаемых элементов в условиях коррозии и поврежденности материала
Ключевые слова:
коррозия, поврежденность материала, оптимизацияАннотация
Многие ответственные элементы строительных и машиностроительных конструкций при своей эксплуатации находятся в сложных условиях работы (высокая температура, агрессивная среда и т.д.). В этом случае они могут быть подвержены двойному эффекту: коррозии и поврежденности материала. Коррозия приводит к уменьшению сечения конструкции, в результате чего в ней увеличиваются напряжения. В свою очередь, поврежденность материала сопровождается появлением в нем микротрещин и пустот, в результате неупругой деформации (ползучести), что приводит к ухудшению его физических характеристик (например, модуля упругости) и резкому снижению величин напряжений, при которых происходит разрушение конструкции. В этой работе рассматривается оптимизация изгибаемых элементов прямоугольного сечения, эксплуатируемых в условиях, способствующих появлению как коррозии, так и поврежденности материала. В качестве уравнения коррозии принимается модель В. М. Долинского, учитывающая влияние напряжений на коррозионный износ конструкций. Как кинетическое уравнение, описывающее изменение поврежденности материала, используется модель Ю. Н. Работнова. Критерием оптимальности служит минимум массы конструкции. Оптимизируется высота изгибаемого прямоугольного элемента по его длине с использованием принципа равноповрежденности в конечный момент жизни конструкции. Предложенный в работе подход может быть использован при решении аналогичных задач оптимального проектирования конструкций, работающих в условиях коррозии и поврежденности материала, с использованием как аналитических решений, так и численных методов.Библиографические ссылки
Kachanov, L. M. (1974). Osnovy mekhaniki razrusheniya [Fundamentals of fracture mechanics]. Moscow: Nauka, 308 p. (in Russian).
Kachanov, L. M. (1985). O vremeni razrusheniya v usloviyakh polzuchesti [On the time of fracture under creep conditions]. Izv. AN SSSR. Otd. tekhn. nauk – Proceedings of the USSR Academy of Sciences. Department of Technical Sciences, no. 8, pp. 26–31 (in Russian).
Rabotnov, Yu. N. (1966). Polzuchest elementov konstruktsiy [Creep of structural elements]. Moscow: Nauka, 752 p. (in Russian).
Lemaitre, J. (1984). How to use damage mechanics. Nuclear Engineering and Design, vol. 80, iss. 2, pp. 233–245. https://doi.org/10.1016/0029-5493(84)90169-9
Chaboche, J.-L. (1981). Continuous damage mechanics – a tool to describe phenomena before crack initiation. Nuclear Engineering and Design, vol. 64, iss. 2, pp. 233–247. https://doi.org/10.1016/0029-5493(81)90007-8
Golub, V. P. (1996). Non-linear one-dimensional continuum damage theory. International Journal of Mechanical Sciences, vol. 38, iss. 10, pp. 1139–1150. https://doi.org/10.1016/0020-7403(95)00106-9
Sosnovskiy, L. A. & Shcherbakov, S. S. (2011). Kontseptsii povrezhdennosti materialov [Concepts of material damage]. Vestnik TNTU – Scientific journal of TNTU, Special Issue (1), pp. 14–23 (in Russian).
Travin, V. Yu. (2014). Otsenka povrezhdennosti materiala pri raschete prochnosti i dolgovechnosti elementov korpusnykh konstruktsiy [Assessment of material damage in calculating the strength and durability of elements of hull structures]. Izv. Tul. un-ta. Tekhn. nauki – Izvestiya Tula State University. Series: Technical science, iss. 10, part 1, pp. 128–132.
Volegov, P. S., Gribov, D. S., & Trusov, P. V. (2017). Damage and fracture: Classical continuum theories. Physical Mesomechanics, vol. 20, iss. 2, pp. 157–173. https://doi.org/10.1134/S1029959917020060
Kostyuk, A. G. (1953). Opredeleniye profilya vrashchayushchegosya diska v usloviyakh polzuchesti [Determination of the profile of a rotating disk under creep conditions]. Prikl. matematika i mekhanika – Journal of Applied Mathematics and Mechanics, vol. 17, iss. 5, pp. 615–618 (in Russian).
Reitman, M. I. (1967). Theory of the optimum design of plastics structures with allowance for the time factor. Polymer Mechanics, vol. 3, iss. 2, pp. 243–244. https://doi.org/10.1007/BF00858872
Prager, W. (1968). Optimal structural design for given stiffness in stationary creep. Journal of Applied Mathematics and Physics (ZAMP), vol. 19, iss. 2, pp. 252–256. https://doi.org/10.1007/BF01601470
Nemirovskii, Yu. V. (1971). Design of optimum disks in relation to creep. Strength of Materials, vol. 3, iss. 8, pp. 891–894. https://doi.org/10.1007/BF01527642
Zyczkowski M. (1971). Optimal structural design in rheology. Journal of Applied Mechanics, vol. 38, iss. 1, pp. 39–46. https://doi.org/10.1115/1.3408764
Pochtman, Yu. M. & Fridman M. M. (1997). Metody rascheta nadezhnosti i optimalnogo proyektirovaniya konstruktsiy, funktsioniruyushchikh v ekstremalnykh usloviyakh [Methods for calculating the reliability and optimal design of structures operating in extreme conditions]. Dnepropetrovsk: Nauka i obrazovaniye, 134 p.
Fridman, M. M. & Zyczkowski, M. (2001). Structural optimization of elastic columns under stress corrosion conditions. Structural and Multidisciplinary Optimization, vol. 21, iss. 3, pp. 218–228. https://doi.org/10.1007/s001580050186
Fridman, M.M. & Elishakoff, I. (2013). Buckling optimization of compressed bars undergoing corrosion. Ocean Systems Engineering, vol. 3, iss. 2, pp. 123–136. https://doi.org/10.12989/ose.2013.3.2.123
Fridman, M. M. & Elishakoff, I. (2015). Design of bars in tension or compression exposed to a corrosive environment. Ocean Systems Engineering, vol. 5, iss. 1, pp. 21–30. https://doi.org/10.12989/ose.2015.5.1.021
Fridman, M. M. (2016). Optimalnoye proyektirovaniye trubchatykh sterzhnevykh konstruktsiy, podverzhennykh korrozii [Optimal design of tubular bar structures subject to corrosion]. Problemy mashinostroyeniya – Journal of Mechanical Engineering, vol. 19, no. 3, pp. 37–42 (in Russian). https://doi.org/10.15407/pmach2016.03.037
Dolinskii, V. M. (1967). Calculations on loaded tubes exposed to corrosion. Chemical and Petroleum Engineering, vol. 3, iss. 2, pp. 96–97. https://doi.org/10.1007/BF01150056
Gurvich, I. B., Zakharchenko, B. G., & Pochtman, Yu. M. (1979). Randomized algorithm to solve problems of nonlinear programming. Izv. Ac. Sci. USSR. Engineering Cybernetics, no. 5, pp. 15–17 (in Russian).
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2019 Мark M. Fridman
Это произведение доступно по лицензии Creative Commons «Attribution-NoDerivatives» («Атрибуция — Без производных произведений») 4.0 Всемирная.
Авторы, публикующиеся в этом журнале, соглашаются со следующими условиями:
- Авторы оставляют за собой право на авторство своей работы и передают журналу право первой публикации этой работы на условиях лицензионного договора (соглашения).
- Авторы имеют право заключать самостоятельно дополнительные договора (соглашения) о неэксклюзивном распространении работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном хранилище учреждения или публиковать в составе монографии), при условии сохранения ссылки на первую публикацию работы в этом журнале.
- Политика журнала позволяет размещение авторами в сети Интернет (например, в хранилищах учреждения или на персональных веб-сайтах) рукописи работы, как до подачи этой рукописи в редакцию, так и во время ее редакционной обработки, поскольку это способствует возникновению продуктивной научной дискуссии и позитивно отражается на оперативности и динамике цитирования опубликованной работы (см. The Effect of Open Access).