Моделирование микротурбины, работающей на полученном в результате газификации опавших листьев генераторном газе, с помощью Cycle-Tempo
Аннотация
Опавшие листья имеют большой потенциал для преобразования в энергию благодаря их большой доступности в мире, и в Индонезии в том числе. Газификация – это технология для преобразования листьев в генераторный газ. Этот газ можно применять в различных целях, в частности в качестве топлива для газовых турбин, включая микротурбины, являющиеся в настоящее время одними из самых популярных микрогенераторов электроэнергии. Чтобы свести к минимуму риск неудачи при проведении экспериментов и связанные с ними затраты, используется моделирование. Для моделирования работы газовой турбины применяется инструмент термодинамического анализа Cycle-Tempo. В этом исследовании с помощью Cycle-Tempo проведено нульмерное моделирование микротурбины, использующей в качестве топлива генераторный газ. Нашим вкладом в исследования является моделирование газовой микротурбины с меньшей выходной электрической мощностью, около 1 кВт, и изучение возможности использовать генераторный газ, полученный в результате газификации опавших листьев, в качестве топлива для газовой турбины. Цель моделирования – определить степень влияния соотношения воздух-топливо на мощность компрессора, турбины, электрогенератора, термический коэффициент полезного действия (КПД), температуру на входе в турбину и выходе из нее. Моделирование проводилось при постоянном расходе топлива 0,005 кг/с, максимальном расходе воздуха 0,02705 кг/с и соотношении воздух-топливо в диапазоне от 1,55 до 5,41. Газификация листьев была смоделирована ранее с использованием константы равновесия для получения состава генераторного газа. В качестве топлива использовался генераторный газ, молярные доли которого составляли около 22,62 % CO; 18,98 % H2; 3,28 % CH4; 10,67 % CO2 и 44,4 % N2. Результаты моделирования показали, что увеличение соотношения воздух-топливо приводит к увеличению мощности турбины с 1,23 до 1,94 кВт. Мощность электрогенератора, термический КПД, температура на входе турбины и выходе из нее снизились, соответственно, с 0,89 до 0,77 кВт; с 3,17 до 2,76 %; с 782 до 379 °C и с 705 до 304 °C. Максимальные мощность электрогенератора и термический КПД, соответственно, 0,89 кВт и 3,17 %, были получены при соотношении воздух-топливо 1,55. Мощность электрогенератора и термический КПД составили 0,8 кВт и 2,88 %, соответственно, при соотношении воздух-топливо 4,64 или при избытке воздуха 200 %. Результат моделирования аналогичен результату, полученному в ходе эксперимента, описанного в литературе.
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2021 Fajri Vidian Fajri
Это произведение доступно по лицензии Creative Commons «Attribution-NoDerivatives» («Атрибуция — Без производных произведений») 4.0 Всемирная.
Авторы, публикующиеся в этом журнале, соглашаются со следующими условиями:
- Авторы оставляют за собой право на авторство своей работы и передают журналу право первой публикации этой работы на условиях лицензионного договора (соглашения).
- Авторы имеют право заключать самостоятельно дополнительные договора (соглашения) о неэксклюзивном распространении работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном хранилище учреждения или публиковать в составе монографии), при условии сохранения ссылки на первую публикацию работы в этом журнале.
- Политика журнала позволяет размещение авторами в сети Интернет (например, в хранилищах учреждения или на персональных веб-сайтах) рукописи работы, как до подачи этой рукописи в редакцию, так и во время ее редакционной обработки, поскольку это способствует возникновению продуктивной научной дискуссии и позитивно отражается на оперативности и динамике цитирования опубликованной работы (см. The Effect of Open Access).