Моделювання мікротурбіни, що працює на отриманому в результаті газифікації опалого листя генераторному газі, за допомогою Cycle-Tempo

Автор(и)

  • Fajri Vidian Кафедра машинобудування, інженерний факультет, Університет Шрівіджая (Шосе Палембанг-Прабумуліх км 32, Індралая, Оган Ілір, Південна Суматра, 30662, Індонезія), Індонезія https://orcid.org/0000-0002-7136-7331
  • Putra Anugrah Peranginangin Кафедра машинобудування, інженерний факультет, Університет Шрівіджая (Шосе Палембанг-Прабумуліх км 32, Індралая, Оган Ілір, Південна Суматра, 30662, Індонезія), Індонезія https://orcid.org/0000-0003-2782-0108
  • Muhamad Yulianto Науково-дослідний інститут науки і техніки, Департамент прикладної механіки, Університет Васеда (3-4-1, Окубо, Сіндзюку, Токіо, 169-8555, Японія), Японія https://orcid.org/0000-0003-1761-348X

Анотація

Опале листя має великий потенціал для перетворення в енергію завдяки його великій доступності в світі, і в Індонезії у тому числі. Газифікація – це технологія для перетворення листя в генераторний газ. Цей газ можна застосовувати для різних цілей, зокрема як паливо для газових турбін, включаючи мікротурбіни, що є на цей час одними з найпопулярніших мікрогенераторів електроенергії. Щоб звести до мінімуму ризик невдачі під час проведення експериментів і пов'язані з ними витрати, використовується моделювання. Для моделювання роботи газової турбіни застосовується інструмент термодинамічного аналізу Cycle-Tempo. У цьому дослідженні за допомогою Cycle-Tempo виконано нульмерне моделювання мікротурбіни, що використовує як паливо генераторний газ. Нашим внеском в дослідження є моделювання газової мікротурбіни з меншою вихідною електричною потужністю, близько 1 кВт, і вивчення можливості використання генераторного газу, отриманого в результаті газифікації опалого листя, як  палива для газової турбіни. Мета моделювання – визначити ступінь впливу співвідношення повітря-паливо на потужність компресора, турбіни, електрогенератора, термічний коефіцієнт корисної дії (ККД), температуру на вході в турбіну і на виході з неї. Моделювання проводилося при постійній витраті палива 0,005 кг/с, максимальній витраті повітря 0,02705 кг/с і співвідношенні повітря-паливо в діапазоні від 1,55 до 5,41. Газифікація листя була змодельована раніше з використанням константи рівноваги для отримання складу генераторного газу. Як паливо використовувався генераторний газ, атомні частки якого становили близько 22,62% CO; 18,98% H2; 3,28% CH4; 10,67% CO2 і 44,4% N2. Результати моделювання показали, що збільшення співвідношення повітря-паливо приводить до збільшення потужності турбіни з 1,23 до 1,94 кВт. Потужність електрогенератора, термічний ККД, температура на вході турбіни і на виході з неї знизилися, відповідно, з 0,89 до 0,77 кВт; з 3,17 до 2,76%; з 782 до 379 ° C і з 705 до 304 ° C. Максимальні потужність електрогенератора і термічний ККД, відповідно, 0,89 кВт і 3,17%, були отримані при співвідношенні повітря-паливо 1,55. Потужність електрогенератора і термічний ККД склали 0,8 кВт і 2,88%, відповідно, при співвідношенні повітря-паливо 4,64 або при надлишку повітря 200%. Результат моделювання аналогічний результату, отриманому в ході експерименту, описаному в літературі.

##submission.downloads##

Опубліковано

2021-09-30

Номер

Розділ

Аерогідродинаміки і тепломасообмін