Development Thermal state of the rotor of the turbogenerator with direct hydrogen cooling

Authors

  • Е. А. Овсянникова GP plant "Electrotyazhmash", Kharkov, National Aerospace University. N.E. Zhukovsky "KhAI", Ukraine

Keywords:

turbogenerator, rotor winding, thermal state, finite element method

Abstract

Modeling of the rotor thermal state of a synchronous turbogenerator of 550 MW with direct cooling of the winding by hydrogen is performed. The temperature field of the rotor is investigated by finite element method in a three-dimensional formulation. Mathematical modeling of the task is implemented in the SolidWorks computer environment. Correlations for determination of the heat transfer coefficients that were obtained by different scientists in 1959-1970 and applicated in the design of cooling systems for nuclear rocket engines are given. Correlation was selected that provides temperature distribution corresponds to test results. The temperature distribution of the rotor winding was obtained as a result of thermal test of 550 MW turbogenerator which were carried out at State Enterprise «Plant «Electrotyazhmash» in idling and short circuit mode. According to test results, maximum temperature of the rotor winding in the nominal mode was 74.7 ° C (347.7 K). The comparison of the calculated data and test results shows that the difference is not more than 10%. The thermal state of the rotor does not restrict of the nominal power of the generator

References

Avruh, V.Ju. Teplogidravlicheskie processy v turbo- i gidrogeneratorah / V.Ju. Avruh, L.A. Duginov. – M.: Jenergoatomizdat, 1991. – 208 c.

Izvehov V.I. Proektirovanie turbogeneratorov / Izvehov V.I., N.A. Serihin, A.I. Abramov. – M.: Izd. MJeI, 2005. – 440 s.

Przybysz, Je. Metoda wyznaczania rozkładu temperatur w uzwojeniu wirnika turbogeneratora / Je. Przybysz // Archiwum elektrotechniki. – 1973. – Tom XXII. – С. 767- 777.

SolidWorks 2007/2008. Komp'juternoe modelirovanie v inzhenernoj praktike / [A.A. Aljamovskij, A.A. Sobachkin, E.V. Odincov, A.I. Haritonovich, N.B. Ponomarev]. – SPb.: BHV-Peterburg, 2008. – 1040 s.

Locke, J.M. Uncertainty Analysis of Heat Transfer to Supercritical Hydrogen in Cooling Channels / J.M. Locke, D.B. Landrum // AIAA 2005-4303. – 2005.

Taylor, M.F. Correlation of Local Heat-Transfer Coefficients for Single-Phase Turbulent Flow of Hydrogen in Tubes With Temperature Ratios to 23 / M.F. Taylor // NASA TN D-4332. – 1968.

Dziedzic W.M. Analytical Comparison of Convective Heat Transfer Correlations in Supercritical Hydrogen / W. M. Dziedzic, S. C. Jonest, D. C. Gould, D. H. Petley // AIAA Journal of Thermophysics and Heat Transfer. – 1993. – Vol. 7, No. 1, Jan.-March.

Gurevich, Je.I. Teplovye ispytanija turbogeneratorov bol'shoj moshhnosti / Je.I. Gurevich. – L.: Jenergija, 1969. – 168 s.

Kovarskij E.M. Ispytanie jelektricheskih mashin / E.M. Kovarskij, Ju.I. Janko. – M. : Jenergoatomizdat, 1990. – 320 s.

Klempner G. Operation and Maintenance of Large Turbo-generators / G. Klempner, I. Kerszenbaum. – New York : IEEE, 2004. – 560 p.

Published

2017-10-05

Issue

Section

Aerohydrodynamics and heat-mass transfer