Aeroelastic behaviour of the turbine blade row in 3D viscous flow

Authors

  • V. I. Gnesin A. Podgorny Institute of Mechanical Engineering Problems of NASU, Kharkiv, Ukraine, Ukraine
  • L. V. Kolodiazhnaya A. Podgorny Institute of Mechanical Engineering Problems of NASU, Kharkiv, Ukraine, Ukraine
  • R. Rzadkowski The Szewalski Institute of Fluid-Flow Machinery PAS, Gdansk, Poland,

Keywords:

aeroelastic behaviour, viscous flow, blade row, auto-oscillations, coupled problem, unsteady load

Abstract

This paper presents the results of a numerical analysis of the aeroelastic behaviour of the oscillating blade row of a turbine stage in the 3D flow of viscous gas, taking into account the non-uniform pressure distribution in the circumferential direction behind the blade rotor. The numerical method is based upon the solution of the coupled problem of the unsteady aerodynamics and blade elastic oscillations in the unsteady spatial gas flow through the blade row of the axial turbine last stage. 3D viscous gas flow through the turbine stage with periodicity on the whole annulus is described by the unsteady Navier-Stokes equations in the form of conservation laws, which are integrated using the explicit monotonous finite-volume Godunov-Kolgan  difference scheme and a  moving hybrid H-O grid. The dynamic analysis uses a modal approach and 3D finite element model of a blade. The investigations showed that the unsteady pressure distribution in the circumferential direction affects the unsteady loads and modes of blade oscillations. The presented method for solving the coupled aero-elastic problem makes it possible to predict the amplitude-frequency spectrum of blade oscillations in gas flow including the forced oscillations and self-excited oscillations (flutter or auto-oscillations). 

Author Biographies

V. I. Gnesin, A. Podgorny Institute of Mechanical Engineering Problems of NASU, Kharkiv, Ukraine

Doctor of Technical Sciences

L. V. Kolodiazhnaya, A. Podgorny Institute of Mechanical Engineering Problems of NASU, Kharkiv, Ukraine

Doctor of Technical Sciences

R. Rzadkowski, The Szewalski Institute of Fluid-Flow Machinery PAS, Gdansk, Poland

Doctor of Technical Sciences

References

Gnesin, V., Rzadkowski, R., Kolodyazhnaya, L. (2001, September). Coupled Fluid-Structure Problem for 3D Transonic Flow Through a Turbine Stage with Oscillating Blades. Rroc. Of 5th Intern. Symp. On Exper. and Comput. Aerothermodynamic of Internal Flows, (pp. 275–284),Gdansk,Poland.

Baldwin, B., Lomax, H. (1978). Thin layer approximation and algebraic model for separated turbulent flow. AIAA Paper 78–0257, pp. 1−45.

Gnesin, V., Rzadkowski, R., Kolodyazhnaya, L. (2010). Numerical Modelling of fluid–structure interaction in a turbine stage for 3D viscous flow in nominal and off−design regimes. Proc. of ASME, TURBO-EXPO 2010, GT2010−23779,Glasgow,UK, pp. 1−9.

Gnesin, V. I., Kolodyazhnaya, L. V. (1999). Numerical Modelling of Aeroelastic Behaviour for Oscillating Turbine Blade Row in 3D Transonic Ideal Flow. J. Problems in Mash.Eng., Vol. 1, No. 2, pp. 65–76.

Gnesin, V. I., Kolodyazhnaya, L. V. Rzadkowski, R. (2004). A numerical modeling of stator-rotor interaction in a turbine stage with oscillating blades. J. of Fluid and Structure, No. 19, pp. 1141–1153.

Rzadkowski, R., Gnesin, V. I., Kolodyazhnaya, L. V. (2015, September). Rotor Blade Flutter in Last Stage of LP Steam Turbine. Proc.of the 14th Intern. Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines ISUAAAT14 I14-S1-4, (pp. 1–6),Stockholm,Sweden.

Gnesin, V. I., Kolodyazhnaya, L. V. Aeroelastic Phenomena in Turbomachines. Aerodynamics and Aeroacoustics: Problems and Perspectives, 2009, No. 3, pp. 53–62 (in Russian).

Published

2018-04-06

Issue

Section

Aerohydrodynamics and heat-mass transfer