Aeroelastic behaviour of the turbine blade row in 3D viscous flow
Keywords:
aeroelastic behaviour, viscous flow, blade row, auto-oscillations, coupled problem, unsteady loadAbstract
This paper presents the results of a numerical analysis of the aeroelastic behaviour of the oscillating blade row of a turbine stage in the 3D flow of viscous gas, taking into account the non-uniform pressure distribution in the circumferential direction behind the blade rotor. The numerical method is based upon the solution of the coupled problem of the unsteady aerodynamics and blade elastic oscillations in the unsteady spatial gas flow through the blade row of the axial turbine last stage. 3D viscous gas flow through the turbine stage with periodicity on the whole annulus is described by the unsteady Navier-Stokes equations in the form of conservation laws, which are integrated using the explicit monotonous finite-volume Godunov-Kolgan difference scheme and a moving hybrid H-O grid. The dynamic analysis uses a modal approach and 3D finite element model of a blade. The investigations showed that the unsteady pressure distribution in the circumferential direction affects the unsteady loads and modes of blade oscillations. The presented method for solving the coupled aero-elastic problem makes it possible to predict the amplitude-frequency spectrum of blade oscillations in gas flow including the forced oscillations and self-excited oscillations (flutter or auto-oscillations).
References
Gnesin, V., Rzadkowski, R., Kolodyazhnaya, L. (2001, September). Coupled Fluid-Structure Problem for 3D Transonic Flow Through a Turbine Stage with Oscillating Blades. Rroc. Of 5th Intern. Symp. On Exper. and Comput. Aerothermodynamic of Internal Flows, (pp. 275–284),Gdansk,Poland.
Baldwin, B., Lomax, H. (1978). Thin layer approximation and algebraic model for separated turbulent flow. AIAA Paper 78–0257, pp. 1−45.
Gnesin, V., Rzadkowski, R., Kolodyazhnaya, L. (2010). Numerical Modelling of fluid–structure interaction in a turbine stage for 3D viscous flow in nominal and off−design regimes. Proc. of ASME, TURBO-EXPO 2010, GT2010−23779,Glasgow,UK, pp. 1−9.
Gnesin, V. I., Kolodyazhnaya, L. V. (1999). Numerical Modelling of Aeroelastic Behaviour for Oscillating Turbine Blade Row in 3D Transonic Ideal Flow. J. Problems in Mash.Eng., Vol. 1, No. 2, pp. 65–76.
Gnesin, V. I., Kolodyazhnaya, L. V. Rzadkowski, R. (2004). A numerical modeling of stator-rotor interaction in a turbine stage with oscillating blades. J. of Fluid and Structure, No. 19, pp. 1141–1153.
Rzadkowski, R., Gnesin, V. I., Kolodyazhnaya, L. V. (2015, September). Rotor Blade Flutter in Last Stage of LP Steam Turbine. Proc.of the 14th Intern. Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines ISUAAAT14 I14-S1-4, (pp. 1–6),Stockholm,Sweden.
Gnesin, V. I., Kolodyazhnaya, L. V. Aeroelastic Phenomena in Turbomachines. Aerodynamics and Aeroacoustics: Problems and Perspectives, 2009, No. 3, pp. 53–62 (in Russian).
Downloads
Published
Issue
Section
License
Copyright (c) 2018 V. I. Gnesin, L. V. Kolodiazhnaya, R. Rzadkowski
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
All authors agree with the following conditions:
- The authors reserve the right to claim authorship of their work and transfer to the journal the right of first publication of the work under the license agreement (the agreement).
- Authors have a right to conclude independently additional agreement on non-exclusive spreading the work in the form in which it was published by the jpurnal (for example, to place the work in institution repository or to publish as a part of a monograph), providing a link to the first publication of the work in this journal.
- Journal policy allows authors to place the manuscript in the Internet (for example, in the institution repository or on a personal web sites) both before its submission to the editorial board and during its editorial processing, as this ensures the productive scientific discussion and impact positively on the efficiency and dynamics of citation of published work (see The Effect of Open Access).