New Comprehensive Approach to Mathematical Modeling of Metallographic Images of Tool Structures
Keywords:
optical-mathematical method, image, structural heterogeneity, defects, carbide phase, diffusionAbstract
To increase the operational durability of tools in production and operation, this paper proposes an integrated approach for processing metallographic images of tool structures at various stages of their life cycle. It is based on the use of the Thixomet Pro software and a specially developed optical-mathematical method, which supplements standard programs for searching for optimal properties and production parameters. The metallographic structural images, obtained by using both optical and electron microscopes, were evaluated with the analysis of pixels in photos. Changes in the structural components of the metal in the two zones (in the main part and at the edge of the working surface of a tool) were comparatively analyzed. During operation, the decomposition of less stable structural components occurs, and a decrease in the proportion of special carbides from 14.4% to 8.15% can be observed. This is caused by the influence of deformation localization, which leads to the fragmentation and alignment of dispersed carbides at an angle of 45° relative to the working surface of a tool deep into the tool under the action of stresses, which during operation are the centers of crack nucleation and development. At the same time, carbide decomposition as well as diffusion of carbon and chromium can be observed. Using the mathematical method for describing structural changes, it was found that under the influence of external factors at the edge of the working surface of a tool, the intensity of the resulting diffusion of chemical components is higher. In addition, zones of damage and maximum local heterogeneity associated with the presence of pores and cracks were identified. This technique made it possible to identify an increase in the anisotropy of properties, formed during operation and associated with metal degradation, and determine the degree of structural heterogeneity.References
Chubov, A. A. (2007). Provedeniye avtomatizirovannogo metallograficheskogo analiza na primere izobrazheniy mikrostruktur vysokoprochnogo chuguna [Automated metallographic analysis using microstructural images of ductile iron as an example]. Vestnik akademii – Academy Herald, no. 2 (12), pp. 106–114 (in Russian).
Yermakov, A. A., Orlov, A. A., Sadykov, S. S., & Starodubov, D. N. (2008). Metody i algoritmy obrabotki i analiza defektoskopicheskikh i metallograficheskikh snimkov [Methods and algorithms for processing and analysing flaw detection and metallographic images].Vladimir:VladimirUniversity, 112 p. (in Russian).
Sadykov, S. S., Orlov, A. A., & Yermakov, A. A. (2009). Teoriya, algoritmy i metodika obrabotki lineychatykh obrazov na defektoskopicheskikh snimkakh [Theory, Algorithms, and Technique for Processing Linear Images on Flaw Detectors]. Izvestiya vuzov. Priborostroyeniye – Journal of Instrument Engineering, no. 2, pp. 11–16 (in Russian).
Orlov, А. А., Sadykov, S. S., & Zhyznyakov, A. L. (2001). Using the Hough transform for separation and suppression the rib in X-ray scenes. Pattern Recognition and Image Analysis, vol. 11, iss. 2, pp. 365–369.
Orlov, A. A. & Sadykov, S. S. (2009). Analysis and syntheses of the rift images. Pattern Recognition and Image Analysis, vol. 19, iss. 1, pp. 186–189. https://doi.org/10.1134/S1054661809010301.
Sadykov, S. S. & Yakovlev, A. V. (2003). Matematicheskaya model sherokhovatoy poverkhnosti. Formirovaniye i issledovaniye [Mathematical model of a rough surface. Formation and research]. Zavodskaya laboratoriya. Diagnostika materialov – Industrial laboratory. Diagnostics of materials, no. 8, pp. 32–35 (in Russian).
Skoblo, T. S., Romaniuk, S. P., Sidashenko, A. I., Garkusha, I.E., Taran, V. S., Taran, A. V., & Demchenko, S. V. (2018). Study of degradation mechanism of metal-cutting tools and their hardening by ZrN PVD coatings. Problems of atomic science and technology. Series: Plasma Physics, no. 6, pp. 300–303.
Skoblo, T. S., Romaniuk, S. P., Sidashenko, A. I., Taran, V. S., Taran, A. V., Dorozhko, I. I., & Pilgui, N. N. (2019). Complex evaluation of structural state degree of strengthening nanocoatings. Problems of atomic science and technology. Series: Plasma Physics, no. 1, pp. 225–228.
Skoblo, T. S., Belkin, Ye. L., & Romanyuk, S. P. (2014). Metodika matematicheskoy otsenki fazovogo sostava stali [Method for the mathematical evaluation of the phase composition of steel]. Vestnik Kharkovskogo natsionalnogo tekhnicheskogo universiteta selskogo khozyaystva – Bulletin of Kharkov National Technical University of Agriculture, iss. 146, pp. 8–24 (in Russian).
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Svitlana P. Romaniuk
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
All authors agree with the following conditions:
- The authors reserve the right to claim authorship of their work and transfer to the journal the right of first publication of the work under the license agreement (the agreement).
- Authors have a right to conclude independently additional agreement on non-exclusive spreading the work in the form in which it was published by the jpurnal (for example, to place the work in institution repository or to publish as a part of a monograph), providing a link to the first publication of the work in this journal.
- Journal policy allows authors to place the manuscript in the Internet (for example, in the institution repository or on a personal web sites) both before its submission to the editorial board and during its editorial processing, as this ensures the productive scientific discussion and impact positively on the efficiency and dynamics of citation of published work (see The Effect of Open Access).