Surface microhardness of stainless steel which are modified by ionic implantation

Authors

  • Виталий Викторович Гончаров Institute of Chemical Technology (Rubizhne) Volodymyr Dahl' East Ukrainian National University Str. Lenin, 31, Rubezhnoye, Lugansk region, Ukraine, 93009, Ukraine https://orcid.org/0000-0003-4861-6210

Keywords:

ion implantation, catalyst, microhardness, ductility

Abstract

The importance of the problem of applied systems synthesis with active components was established. Based on the analysis of literary sources, the optimal processing 

technology of the stainless steel carrier was chosen. The objective of this paper was formulated, and the task of investigating the mechanical properties of steel-based systems was set. The techniques of obtaining and studying samples were considered. The samples were synthesized by implanting ions of nitrogen, chromium, aluminum, titanium, molybdenum on the stainless steel. The study of microhardness and ductility of the obtained samples was conducted by the scratching method. It was shown that ion implantation as the processing technology significantly improves mechanical characteristics of the initial carrier − stainless foil. Microhardness of samples is increased (except the implant with chromium), and ductility is slightly reduced. The prospects of applying the obtained composites as working elements of catalysts, heating and electrical equipment, etc., were shown.

Author Biography

Виталий Викторович Гончаров, Institute of Chemical Technology (Rubizhne) Volodymyr Dahl' East Ukrainian National University Str. Lenin, 31, Rubezhnoye, Lugansk region, Ukraine, 93009

Ph.D., Associate Professor

Department of Physics and Technical Mechanics

References

Gallei, E. Development of technical catalysts [Text] / E. Gallei, E. Schwab // Catalysis Today. – 1999. – Vol. 51. – № 3-4. – P. 535 – 546. 2. Anastas, P. T. The role of catalysis in the design, development, and implementation of green chemistry [Text] / P. T. Anastas, L. B. Bartlett, M. M. Kirchhoff // Catalysis Today. – 2000. – Vol. 55. – № 1-2. – P. 11 – 22. 3. Farrauto, R. J. Environmental catalysis into the 21st century [Text] / R. J. Farrauto, R. M. Heck // Catalysis Today. – 2000. – Vol. 55, № 1-2. – P. 179 – 187. 4. Anca Faur Ghenciu Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems [Text] / Anca Faur Ghenciu // Current Opinion in Solid State and Materials Science. – 2002. – № 6 – P. 389 – 399. 5. Holladay, J. D. Review of developments in portable hydrogen production using microreactor technology [Text] / J. D. Holladay, Yong Wang, E. Jones // Chem. Rev. – 2004. – № 104 – P. 4767 – 4790. 6. Струтинская, Л. Т. Термоэлектрические микрогенераторы. Современное состояние и перспективы ис-пользования [Текст] / Л. Т. Струтинская // Технология и конструирование в электронной аппаратуре. – 2008. – № 4 – C. 5 – 13. 7. Козин, Л. Ф. Водородная энергетика и экология [Текст] / Л. Ф. Козин, С. В. Волков. – Киев : Наукова думка, 2002. – 336 с. 8. Armor, J. N. Catalysis and the hydrogen economy [Text] / J. N. Armor // Catalysis Letters. – 2005. – Vol. 101. – № 3-4 – P. 131 – 135. 9. McCarty, J. G. Stability of supported metal and supported metal oxide combustion catalysts [Text] / J. G. McCarty, M. Gusman, D. M. Lowe // Catalysis Today. – 1999. – № 47 – P. 5 – 17. 10. Калин, Б. А. Радиационно-пучковые технологии обработки конструкционных материалов [Текст] / Б. А. Калин // Физика и химия обработки материалов. – 2001. – №4 – C. 5 – 16. 11. Поут, Дж. М. Модифицирование и легирование поверхности лазерными, ионными и электронными пучками [Текст] / Дж. М. Поут, Г. Фоти, Д. К. Джекобсон. – М. : Машиностроение, 1987. – 424 с. 12. Тонкие пленки – взаимная диффузия и реакции / под. ред. Дж. Поута, К. Ту, Дж. Мейера. – М. : Мир. – 1982. – 576 с. 13. Васецкая, Л. Ионная имплантация, как способ повышения эксплуатационной стойкости мелкоразмер-ного стального инструмента / Л. Васецкая // Восточно-Европейский журнал передовых технологий. – 2013. – T. 6, N 5(66). - С. 7-11. – Режим доступа : http://journals.uran.ua/eejet/article/view/18437 14. Vaneman, G. L. Comparison of metal foil and ceramic monolith automotive catalytic converters [Text] / G. L. Vaneman // Catalysis and automotive pollution control II. – 1991. – Vol. 71. – P. 537 – 555. 15. Suresh, T. Gulati New developments in catalytic converter durability [Text] / Suresh T. Gulati // Catalysis and automotive pollution control II. – 1991. – Vol. 71. – P. 481 – 507. 16. Okazaki, Y. Development of high performance metal catalyst support for cleaning automobile exhaust gases [Text] / Y. Okazaki, M. Fukaya, S. Konya // Nippon Steel Technical Report. – 1996. – №70 – P. 23 – 30. 17. Jatkar, A. D. New catalyst support structure for automotive catalytic converters [Text] / A. D. Jatkar // SAE Special Publications. – 1997. – №1260 – P. 149 – 155. 18. Egbert, S. J. Lox Automotive exhaust treatment [Text] / S. J. Lox Egbert // Handbook of Heterogeneous Ca-talysis. – 2008. – № 1 – C. 2274 – 2345. 19. Zamaro, J. M. ZSM5 growth on a FeCrAl steel support. Coating characteristics upon the catalytic behavior in the NOx SCR [Text] // J. M. Zamaro, M. A. Ulla, E. E. Miro // Microporous and Mesoporous Materials. – 2008. – №115. – P. 113 – 122. 20. Luthera, M. Forced periodic temperature cycling of chemical reactions in microstructure devices [Text] // M. Luthera, J. J. Brandnera, L. Kiwi-Minsker // Chemical Engineering Science. – 2008. – № 63. – P. 4955 – 4961. 21. Окисление СО на оксиде меди, нанесенном на металлическую фольгу [Текст] / А. Н. Субботин, Б. С. Гудков, М. П. Воробьева // Катализ в промышленности. – 2005. – №5. – C. 48 – 51. 22. Giornelli, T. Preparation and characterization of VOx/TiO2 catalytic coatings on stainless steel plates for structured catalytic reactors [Text] / T. Giornelli, A. Lofberg, E. Bordes-Richard // Applied Catalysis A: General. – 2006. – №305 – P. 197 – 203. 23. Kołodziej, A. Structured catalyst carrier for selective oxidation of hydrocarbons: modelling and testing [Text] / A. Kołodziej, W. Krajewski, J. Łojewska // Catalysis Today. – 2004. – Vol. 91-92. – P. 59 – 65. 24. Lofberg, A. Catalytic coatings for structured supports and reactors: VOx/TiO2 catalyst coated on stainless steel in the oxidative dehydrogenation of propane [Text] / A. Lofberg, T. Giornelli, S. Paul, E. Bordes-Richard // Ap-plied Catalysis A: General. – 2011. – № 391. – P. 43 – 51. 25. Meille, V. Review on methods to deposit catalysts on structured surfaces [Text] / Valerie Meille // Applied Catalysis A: General. – 2006. – №315 – P. 1 – 17. 26. Kizling, M. B. A review of the use of plasma techniques in catalyst preparation and catalytic reactions [Text] / M. B. Kizling, S. G. Järås // Applied Catalysis A: General. – 1996. – № 147. – P. 1 – 21. 27. Liu, C.-J. Catalyst preparation using plasma technologies [Text] / C.-J. Liu, G. Vissokov, B. W.-L. Jang // Catalysis Today. – 2002. – № 72. – P. 173 – 184. 28. Dudognon, J. Grazing incidence X-ray diffraction spectra analysis of expanded austenite for implanted stainless steel [Text] / J. Dudognon, M. Vayer, A. Pineau, R. Erre // Surface & Coating Technology. – 2008. – Vol. 202, № 20 – P. 5048 – 5054. 29. Dudognon, J. Mo and Ag ion implantation in austenitic, ferritic and duplex stainless steels: A comparative study [Text] / J. Dudognon, M. Vayer, A. Pineau, R. Erre // Surface & Coating Technology – 2008. – Vol. 203 – P. 180 – 185. 30. Dudognon, J. Modelling of grazing incidence X-ray diffraction spectra from Mo-implanted stainless steel. Comparison with experimental data [Text] / J. Dudognon, M. Vayer, A. Pineau, R. Erre // Surface & Coating Technol-ogy – 2006. – Vol. 200 – P. 5058 – 5066. 31. Гончаров, В. В. Синтез и теплофизические свойства образцов из стали 12Х18Н10Т после ионной им-плантации алюминия [Текст] / В. В. Гончаров, В. А. Зажигалов // Modern science: researches, ideas, results, tech-nologies. – 2011. – №2(7) – C. 178 – 182. 32. Измерение микротвердости царапанием алмазними наконечниками : ГОСТ 21318-75. – [Чинний від 1975-12-02]. – М. : Гос. комитет стандартов Совета министров СССР, 1975. – 24 с. 1. Gallei, E., Schwab, E. (1999). Development of technical catalysts. Catalysis Today, Vol. 51, № 3-4, 535–546. 2. Anastas, P. T., Bartlett, L. B., Kirchhoff, M. M. (2000). The role of catalysis in the design, development, and implementation of green chemistry. Catalysis Today, Vol. 55, № 1-2, 11–22. 3. Farrauto, R. J., Heck, R. M. (2000). Environmental catalysis into the 21st century. Catalysis Today, Vol. 55, № 1-2, 179–187. 4. Ghenciu, A. F. (2002). Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Current Opinion in Solid State and Materials Science, № 6, 389 – 399. 5. Holladay, J. D., Wang, Y., Jones, E. (2004). Re-view of developments in portable hydrogen production using microreactor technology. Chem. Rev., 104, 4767–4790. 6. Strutinskaya, L. Т. (2008). Termoelektricheskie mikrogeneratory. Sоvremennoe sostoyanie i perspektivy ispol'zovaniya. Tekhnologiya i konstruirovanie v elektron-noy apparature, 4, 5–13. 7. Kozin, L. F., Volkov, S. V. (2002). Vodorodnaya energetika i ekologiya. Naukova dumka, 336. 8. Armor, J. N. (2005). Catalysis and the hydrogen economy. Catalysis Letters, Vol. 101, № 3-4, 131–135. 9. McCarty, J. G., Gusman, M., Lowe, D. M. (1999). Stability of supported metal and supported metal oxide com-bustion catalysts. Catalysis Today, № 47, 5–17. 10. Kalin, B. А. (2001). Radiatsyonno-puchkovye tekhnologii obrabotki konstruktsyonnyh materialov. Fizika i khimiya obrabotki materialov, № 4, 5–16. 11. Pout, J. М., Foti, G., Jekobson, D. K. (1987). Modifitsyrovanie i legirovanie poverkhnosti lasernymi, ionnymi i elektronnymi puchkami. М.: Mashinostroenie, 424. 12. Pout, J. М., Tu, K., Meyer, J. (1982). Tonkie plenki – vzaimnaya diffuziya i reaktsyi. Мir, 576. 13. Vasetskaya, L. (2013). Ion implantation as a way to improve the operating durability of fine-size steel tool. Eastern-European Journal Of Enterprise Technologies, 6(5(66)), 7-11. Available at: http://journals.uran.ua/eejet/arti cle/view/18437 14. Vaneman, G. L. (1991). Comparison of metal foil and ceramic monolith automotive catalytic converters. Ca-talysis and automotive pollution control II, Vol. 71, 537–555. 15. Suresh, T. G. (1991). New developments in catalytic converter durability. Catalysis and automotive pollution control II, Vol. 71, 481–507. 16. Okazaki, Y., Fukaya, M., Konya, S. (1996). De-velopment of high performance metal catalyst support for cleaning automobile exhaust gases. Nippon Steel Technical Report, 70, 23–30. 17. Jatkar, A. D. (1997). New catalyst support struc-ture for automotive catalytic converters. SAE Special Publi-cations, 1260, 149–155. 18. Egbert, S. J. L. (2008). Automotive exhaust treatment. Handbook of Heterogeneous Catalysis, 1, 2274–2345. 19. Zamaro, J. M., Ulla, M. A., Miro, E. E. (2008). ZSM5 growth on a FeCrAl steel support. Coating characteristics upon the catalytic behavior in the NOx SCR. Microporous and Mesoporous Materials, 115, 113–122. 20. Luthera, M., Brandnera, J. J., Kiwi-Minsker, L. (2008). Forced periodic temperature cycling of chemical reactions in microstructure devices. Chemical Engineering Science, 63, 4955–4961. 21. Subbotin, A. N., Gudkov, B. S., Vorob'eva, M. P. (2005). Okislenie СО na okside medi, nanesennom na metal-licheskuyu fol'gu. Kataliz v promyshlennosti, 5, 48–51. 22. Giornelli, T., Lofberg, A., Bordes-Richard, A. E. (2006). Preparation and characterization of VOx/TiO2 catalytic coatings on stainless steel plates for structured catalytic reactors. Applied Catalysis A: General, 30, 197–203. 23. Kołodziej, A., Krajewski, W., Łojewska, J. (2004). Structured catalyst carrier for selective oxidation of hydrocarbons: modelling and testing. Catalysis Today, Vol. 91-92, 59–65. 24. Lofberg, A., Giornelli, T., Paul, S., Bordes-Richard, A. E. (2011). Catalytic coatings for structured supports and reactors: VOx/TiO2 catalyst coated on stainless steel in the oxidative dehydrogenation of propane. Applied Catalysis A: General, 391, 43–51. 25. Meille, V. (2006). Review on methods to deposit catalysts on structured surfaces. Applied Catalysis A: Gen-eral, 315, 1–17. 26. Kizling, M. B., Järås, S. G. (1996). A review of the use of plasma techniques in catalyst preparation and cata-lytic reactions. Applied Catalysis A: General, 147, 1–21. 27. Liu, C.-J., Vissokov, G., Jang, W.-L. (2002). Catalyst preparation using plasma technologies. Catalysis Today, 72, 173–184. 28. Dudognon, J., Vayer, M., Pineau, A., Erre, R. (2008). Grazing incidence X-ray diffraction spectra analysis of expanded austenite for implanted stainless steel. Surface & Coating Technology, Vol. 202, № 20, 5048–5054. 29. Dudognon, J., Vayer, M., Pineau, A., Erre, R. (2008). Mo and Ag ion implantation in austenitic, ferritic and duplex stainless steels: A comparative study. Surface & Coating Technology, Vol. 203, 180–185. 30. Dudognon, J., Vayer, M., Pineau, A., Erre, R. (2006). Modelling of grazing incidence X-ray diffraction spectra from Mo-implanted stainless steel. Comparison with experimental data. Surface & Coating Technology, Vol. 200, 5058 5066. 31. Honcharov, V. V., Zazhigalov, V. A. (2011). Sintez i teplofizicheskie svoystva obraztsov iz stali 12Cr18Ni10T posle ionnoy implantatsyi aluminiya. Modern science: researches, ideas, results, technologies, № 2(7), 178–182. 32. Izmerenie mikrotverdosti tsarapaniem almaznymi nakonechnikami (1975). GOST 21318-75. Gosudarstvennyj komitet standartov Soveta ministra SSSR, 24.

Published

2014-02-07

Issue

Section

Material Science in mechanical engineering