Principal Modernization Solutions for a 300 MW Power Unit to be Converted to Operate at Ultra-Supercritical Steam Parameters
Abstract
This paper analyses the state of power engineering in Ukraine and the main trends in the development of the world market in the field of converting high-capacity powerful power units of thermal power plants into ultra-supercritical (USC) ones. It is shown that the energy sector of Ukraine requires special attention and the introduction of new modern technical solutions. Worldwide trends indicate that the emphasis is now on increasing the steam parameters before a turbine to ultra-supercritical ones. This allows one both to increase the efficiency of power units and to reduce thermal emissions, fighting the global environmental problem of climate warming. The implementation of this approach is proposed taking into account the realities of the Ukrainian economy and the available technical capabilities of the power engineering industry. This paper presents the results of variational computational studies of the thermal scheme of the 300 MW power unit of the K-300-23.5 turbine to be converted into a USC one. The problem was solved under the condition of maximizing the preservation of the thermal scheme, increasing the efficiency of the power unit and minimizing capital investments during the modernization of the turbine. It was chosen to preserve the regeneration system, as well as the medium-pressure (MP) and low-pressure (LP) cylinders. Considered and calculated were variants with the addition to the existing turbine of a USC cylinder and the creation of a new high-pressure cylinder (HPC) with insignificant changes in its overall characteristics. The results of computational studies showed that the most rational variant for modernizing the 300 MW turbine plant is the creation of a new HPC designed for operation at USC steam parameters as well as the addition to the IPC of a new cylinder with the purpose of increasing the reheat steam parameters while preserving the regeneration system.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 А. О. Костиков, В. Г. Субботин, А. Л. Шубенко, А. В. Сенецкий, В. А. Тарасова, В. Н. Голощапов, Н. Ю. Бабак
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
All authors agree with the following conditions:
- The authors reserve the right to claim authorship of their work and transfer to the journal the right of first publication of the work under the license agreement (the agreement).
- Authors have a right to conclude independently additional agreement on non-exclusive spreading the work in the form in which it was published by the jpurnal (for example, to place the work in institution repository or to publish as a part of a monograph), providing a link to the first publication of the work in this journal.
- Journal policy allows authors to place the manuscript in the Internet (for example, in the institution repository or on a personal web sites) both before its submission to the editorial board and during its editorial processing, as this ensures the productive scientific discussion and impact positively on the efficiency and dynamics of citation of published work (see The Effect of Open Access).