Heating the particles of coal dust plasma microwave discharge

Authors

  • А. В. Тымчик A.N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Ukraine
  • Н. А. Сафонов A.N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-6416-5176

Keywords:

СВЧ-разряд, угольная частица, плазменно-угольная горелка, задача Коши, скин-слой, плазмотрон, температурное поле, антрацит

Abstract

The article presents the physical and mathematical model of heating coal dust particles microwave discharge plasma at atmospheric pressure in a stream of carbon aerosol. Calculation of the temperature of the coal particles, depending on the time when it moves together with the gas medium is reduced to the solution of the Cauchy problem for an ordinary differential equation modeling the process of heating a coal particle. To calculate the temperature distribution in the microwave discharge plasma used transient heat conduction equation with internal heat sources. It was believed that the source is only Joule heating; convection and thermal conductivity are considered drains energy in the equation is also not taken into account in the amount of energy release due to viscous friction forces, as well as due to compression and expansion volume. The results of numerical studies of the air temperature and the coal particles in the discharge volume in relation to the experimental plasma-coal burner.

Author Biographies

А. В. Тымчик, A.N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine

PhD

Н. А. Сафонов, A.N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine

Candidate of physico-mathematical sciences

References

Каnilo P. М, Коstuk V. E., Тymchik A. V. i dr. (2004). SVCh-plasmennaya technologiya szhiganiya nizkosortnyh ugleу. Probl. Маshinostroenia, 7(2), 72-77. 2. Каrpenko E. I., Меsserle V. E. (1997). Vvedenie v plazmenno-energeticheskie technologii ispolsovaniya tverdyh topliv. Novosibirsk, Nauka, 119. 3. Кuкоtа Yu. P., Bondzik D. L., Dunaevckaya N. I. i dr. (2004). Plasmennyi podzhig vysokosolnyh antrazitov pri ih fakelnom szhiganii. Prom. Teploenergetika, 6, 146-151. 4. Vavriv D. M., Тyмchik A. V., Ivanovskiy A. I. i dr. (2006). О меhanizme vzaimodeystviya SVCh-razryada s pyleugolnym potokom. Probl. Маshinostroeniya,5(1), 85-90. 5. Тymchik А. V. (2009). Vosplamenenie ugolnoj pyli plasmoj SVCh-razryada. Probl. Маshinostroenia, 7(3), 72-77. 6. Dresvin S. V., Bobrov A. A., Lеlevkin V. M. i dr. (1992) VCh- i SVCh-plasmotrony (Nizkotemperaturnaya plasma; Т. 6). Novosibirsk, Nauka, 319. 7. Тymchik А. V. (2011) Usloviya vosplameneniya ugolnoj pyli plasmoj SVCh-razryada. Probl. mаshinostroenia, 7(2), 69-71. 8. Dresvin S. V. Osnovy teorii i rascheta VCh-plasmotronov. (1991). Ltningrad, Energoatomizdat, 312. 9. Тymchik А. V.,Safonov N. A. (2012). SVCh-razryad v potoke ugolnogo aerozolya. Probl. mаshinostroeniya, 15(1), 60-65. 10. Raiser Yu. P. (1987). Fizika gazovogo razryada. Мosrow, Nauka, 592. 11. Pomerantsev V. V., Arefyev K. V., Аchmetov D.B. i dr. (1986). Osnovy prakticheskoy teorii gorenia: Uchebn. Posobie. Ltningrad, Energoatomizdat, 310. 12. Bachvalov N. S., Zhidkov N. P., Коbelkov G. V. (1987). Chislennye metody. Мoskow, Nauka, 600 s. 13. Vlasov V. I., Zalogin G. N., Кusov A. L. (2007). Sublimaciya chastits ugleroda v plasmennom potoke, generiruemym v vysokochastotnom indukcionnom plasmotrone. Zhurn. techn. Fiziki, 77(1), 1-7.

Published

2014-09-11

Issue

Section

Non-traditional energy technologies