On differences in mechanisms of metal fracture in conditions of low-cycle and high-cycle fatigue

Authors

  • В. М. Мацевитый A.N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Ukraine
  • К. В. Вакуленко A.N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0003-2198-1592
  • И. Б. Казак A.N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-8672-2789

Keywords:

low-cycle fatigue, high-cycle fatigue, intercrystalline fracture, intracrystalline fracture, submicrocracks, damage accumulation, coercive force

Abstract

Differences in mechanisms of damage accumulation for low-cycle and high-cycle fatigue in terms of efficiency of use of the coercive force method in diagnostics of presence of defects in metal under cyclic loading are considered.

It is pointed out that, depending on level of loading amplitude, different kinds of fracture are dominant with different probability.

In case of low loading amplitudes, the most probable mechanism comprises an intracrystalline fracture.

In case of cyclic loading with high amplitudes, there is a high probability of fracture along crystal boundaries, which causes accumulation of more coarse fracture elements and leads to greater nonuniformity of metal. Therefore energy consumption required for shifting the domain boundaries during remagnetization is increased. A substantial change in coercive force as one of the most important characteristics of the hysteretic loop, which area represents energy consumption for metal remagnetization, results from more coarse change of magnetic structure.

It is concluded that a high sensitivity of the coercive force method to development of low-cycle fatigue and far lesser sensitivity to high-cycle fatigue is connected with the said differences in metal fracture.

Author Biographies

В. М. Мацевитый, A.N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine

Doctor of Technical Sciences

К. В. Вакуленко, A.N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine

PhD

И. Б. Казак, A.N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine

PhD

References

Ivanova, V.S. Ustalostnoe razrushenie metallov. – M.: Gos. nauch.– tehn. izd-vo lit. po chernoi i cvetnoi metallurgii, 1963.– 272s. 2. Mil'man Yu.V. Novye metodiki mikromehanicheskih ispytanii materialov metodom lokal'nogo nagruzheniya zhestkim indentorom / Yu.V. Mil'man. // Suchasne mater³aloznavstvo XXI stor³chchya. – Ki¿v: Naukova dumka, 1998. – S.637 – 656. 3. Miheev M.N. Svyaz' magnitnyh svoistv so strukturnym sostoyaniem veshestva – fizicheskaya osnova magnitnogo strukturnogo analiza: obzor / M.N. Miheev, E.S. Gorkunov // Defektoskopiya. – 1981. – ¹ 8. – S. 5-22. 4. Fizicheskoe metallovedenie. Vyp. 1. Atomnoe stroenie metallov i splavov / pod red. R. Kana. – M.: Mir, 1967. – 334 s. 5. Bezlyud'ko G.Ya. Ekspluatacionnyi kontrol' ustalostnogo sostoyaniya i resursa metalloprodukcii nerazrushayushim magnitnym (koercitimetricheskim) metodom / G.Ya. Bezlyud'ko // Tehnicheskaya diagnostika i nerazrushayushii kontrol'. – 2003. – ¹2. – S. 20–26. 6. Bezlyud'ko G.Ya., Zaval'nyuk O.P., Nesterenko V.B., Marchenko A.Yu., Solomaha R.N. Obzornaya ocenka sostoyaniya i detal'naya ekspertiza ustalosti metalla bol'sherazmernyh ob'ektov i konstrukcii nerazrushayushim magnitnym metodom / G.Ya. Bezlyud'ko // Tehnicheskaya diagnostika i nerazrushayushii kontrol'. – 2012. – ¹3. – S. 57–65. 7. Macevityi V. M.. Sposobnost' k peremagnichivaniyu stali 14H17N2 posle termoobrabotki, kovki i ciklicheskogo nagruzheniya / V. M. Macevityi, G. Ya. Bezlyud'ko, E. V. Belous, K. V. Vakulenko, I. B. Kazak // Problemy mashinostroeniya. – Har'kov, 2009 – T. 12, ¹4. – S. 79-85. 8. Lazan B. Damping, elasticity and fatigue properties of unnotched and notched N-155 alloy at room and elevated temperatures / B. Lazan, L. Demer // Proc. ASTM, 1951. – v.51. – P. 611 – 617. 9. Lazan B. Damping fatigue and dynamic stress-strain prorerties of mild steel/ B. Lazan, T. Wu. // Proc. ASTM, 1951. – v.51. – P. 649 – 655. 10. Larikov L.N. Zalechivanie defektov v metallah / L.N. Larikov– K.: Naukova dumka, 1980. – 280 s. 11. Macevityi V.M. K fizicheskomu mehanizmu razrusheniya metallov / V.M. Macevityi, I.B. Kazak, K.V. Vakulenko, E.V. Belous, S.V. Lyashok // Problemy mashinostroeniya. – Har'kov. – 2008. – T. 11, ¹ 5-6. – S. 87–96. 12. Vakulenko K.V. Obobshennaya koncepciya adgezii tverdyh tel / K.V. Vakulenko, I.B. Kazak, V.M. Macevityi // Vostochno-Evropeiskii zhernal peredovyh tehnologii. – 2008. – ¹4. – S. 13-23. 13. Snowden K.U. Surface deformation differences between lead fatigued in air and in partial vacuum / K.U. Snowden, J.N. Greenwood // Trans. Of the Metallurgical Society of AIME. – 1958. – P. 626 – 630.

Published

2014-09-11

Issue

Section

Material Science in mechanical engineering