Prolongation of Safe Operation of the K-1000-60/3000 Turbine Power Unit after Damage to the HPC Rotor
Abstract
Currently, when large-scale military actions are taking place on the territory of Ukraine, the inclusion of the domestic energy system in the European one is a reliable component of providing electricity to the country's energy market. However, according to experts, uninterrupted and safe operation of nuclear power plants is still considered a prerequisite for the stable operation of the energy sector of Ukraine. The purpose of the paper is to assess the damageability and individual resource of the rotor of high-pressure cylinder (HPC) of the K-1000-60/3000 turbine power unit of the LMZ after damage to the blades in order to prolong the operation of the power unit in the conditions of a stressed state of the power system. One of the most effective ways to partially solve the problem of replacement of generating capacities is to extend the operating periods of NPP power units after the end of the project operating period, provided that nuclear and radiation safety standards are met. The review of the previously established service life of the energy equipment of NPP power units involves the assessment of the residual resource of the energy equipment in accordance with the regulatory documents. After the accidental damage of the blades of the last stage of the HPC rotor of the K-1000-60/3000 turbine power unit of the LMZ, there was a need to study the cyclic and static damage, the individual residual resource of the HPC rotor. In the process of achieving the goal, studies were carried out for three design options: the original option (five stages of the HPC rotor), the option without the blades of the last stage and the option without the fifth stage (with four first stages). The calculation of the resource indicators of the rotor in the execution of the HPC without blades of the 5th stage shows that the static damage accumulated in the main metal is 52%, the cyclic damage is 5% when applying the standard strength reserves for the number of cycles and for deformations at the level of nN=10 and nε=1.5 according to the recommendations of SOU-N MEV 40.1-21677681-52:2011. Thus, the total damage to the base metal is 57%, which sets the residual resource of the HPC rotor at the level of 88.4 thousand hours. The calculation of the resource indicators of the rotor in the execution of the HPC without entire 5th stage shows that the static damage accumulated in the base metal is 52%, the cyclic damage is 6% when applying the standard strength reserves for the number of cycles and deformations at the above-mentioned level. The total damage to the base metal is 58%, which determines the residual resource of the HPC rotor at the level of 85.6 thousand hours.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 О. Ю. Черноусенко, В. А. Пешко, О. П. Усатий
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
All authors agree with the following conditions:
- The authors reserve the right to claim authorship of their work and transfer to the journal the right of first publication of the work under the license agreement (the agreement).
- Authors have a right to conclude independently additional agreement on non-exclusive spreading the work in the form in which it was published by the jpurnal (for example, to place the work in institution repository or to publish as a part of a monograph), providing a link to the first publication of the work in this journal.
- Journal policy allows authors to place the manuscript in the Internet (for example, in the institution repository or on a personal web sites) both before its submission to the editorial board and during its editorial processing, as this ensures the productive scientific discussion and impact positively on the efficiency and dynamics of citation of published work (see The Effect of Open Access).