Modelling the water treatment process with the clarification filter with the layer of hanging up sediment

Authors

Keywords:

model clarification water, the task with delay, spatial model, asymptotics decision, convection-diffusion-mass transfer, perturbation

Abstract

In preparation of drinking water from natural sources of centralized water supply system is used, consisting of illuminator and filter devices. These devices are compact incorporated in setting with the floating filter loading, that showed positive results. However, for today, not enough attention is paid to the development of the theory of processes of water purification by settings with floating loading, mathematical description of corresponding processes is practically absent in particular , so as, obviously in general case difficult processes can not be adequately enough described by elementary methods. Coming from it, in this work the mathematical model of water treatment is formed and analysed in the illuminator with the layer of hanging up sediment taking into account influence of dose of reagent and irreversible coagulation of impurity particles. The algorithm of the numerical-asymptotic approaching of decision of corresponding model small nonlinear spatial problem was built for systems of differential equations as "convection-diffusion-mass transfer." On this basis, a computer experiment is conducted. Calculation dependences of concentrations of  impurities, flakes and substances for making flakes in filtration flow with the aim of engineering prognostication of dependence between production inputs of filter-illuminator and the degree of efficiency.

Author Biographies

А. Я. Бомба, Rivne State Humanitarian University

Doctor of Technical Sciences

А. П. Сафоник, National University of Water Resources and Environmental Sciences

PhD

References

Filipchuk V. L. Racionalizaciya tehnologicheskih shem ochistki metalosoderjashchih mnogokomponentnyh stochnyh vod promyshlennyh predpriyatiy / V. L. Filipchuk // Himiya i tehnologiya vody. – Кiev : Naukova dumka, 2002. – Т. 24, № 6. – PP. 567–577.

Dolina L. F. Sovremennaya tehnika i tehnologii dlya ochistki stochnyh vod оt soley tyajelih metallov / L. F. Dolina // Dnepropetrovsk: Kontinent, 2008.– 254 p.

Babenkov Е.D. Ochistka vody koaguliantami / Е.D. Babenkov // М.: Nauka, 1977. – 355 p.

Bomba А. I. Neliniyni singuliarno-zbureni zadachі typu "konvekciya – dyphuziya" / А. I. Bomba, S. V. Baranovskiy, І. М. Prisyajnuk // Rivne: NUWGP, 2008. – 252 p.

Bomba А. I. Neliniyni zadachi typu philtraciya- konvekciya dyphuziya –masoobmin za umov nepovnyh danyh / А. I. Bomba, V. І. Gavrilyuk, А. P. Safonyk, О. А. Fursachyk // Rivne: NUWGP, 2011. – 276 p.

Bomba А. I. Komputerne modeluvannia procesu osvitlennya vody na proyasnuvachah iz sharom zavislogo osadu / А.I. Bomba, В.М. Sivak, А.P. Safonik // Visnyk NUWGP: Zb. nauk. pr. – Вип. 4 (40).ч. 2. – Rivne: NUVGP. – 2007. – PP. 365-372.

Zapolskiy А.К. Vodopostachannya, vodovidvedennya ta yakist vody / А.К. Zapolskiy // Pidruchnik. – К.: Vishcha shkola, 2005. – 671 p.

Diffusion mass transfer in fluid systems / E.L. Cussler // Cambridge University Press, 2009. — 631 p.

Berres S. Numerical identification of parameters for a strongly degenerate convection-diffusion problem modelling centrifugation of flocculated suspensions / S. Berres, R. Burger, A. Coronel, M. Sep´ulveda // Appl. Numer. Math., 52:311–337, 2005.

Modeling and simulations of polydisperse suspensions / S. Berres // Doctoral Thesis, University of Stuttgart, 2006.

Published

2014-12-30

Issue

Section

Applied mathematics