Recognition of emergency situations of large hydrogenerators and turbogenerators by multi factors analysis of complicated stressed states of units and component parts

Authors

  • А. Н. Вакуленко SE plant "Electrotyazhmash", Ukraine
  • К. А. Кобзарь SE plant "Electrotyazhmash", Ukraine
  • А. В. Третьяк SE plant "Electrotyazhmash", Ukraine
  • П. Г. Гакал National Aerospace University. NE Zhukovsky «Kharkiv Aviation Institute», Ukraine
  • А. А. Партала SE plant "Electrotyazhmash", Ukraine
  • Е. А. Овсянникова SE plant "Electrotyazhmash" National Aerospace University. NE Zhukovsky «Kharkiv Aviation Institute», Ukraine
  • М. И. Морозинский National Aerospace University. NE Zhukovsky «Kharkiv Aviation Institute», Ukraine

Keywords:

hydrogenerator, rotor, heat state, damage, complicated stressed state

Abstract

The analysis of possible causes of emergency situations emerge of Hydrogenerators (Hydrogenerators-Motors) at different operation modes is carried out. Mechanical calculation of complicated stressed state of one of the construction elements of Hydrogenerator-motor is made in details. The values of stress, temperature and movement in the calculated unit namely inter-pole jumper are shown. The method of using of neuron networks to simulate emergency situations of Hydrogenerators, providing search for optimal solutions to prevent failure is grounded. Detailed algorithm of the expert system to ensure trouble-free operation of Hydrogenerators in real time is indicated. The resolve of the task shall be the analysis of changes in specific parameters of generator units in the process of defects emerge and the creation of the knowledge base that stores data about basic design parameters in the origin, development and ultimately damage of the units. It's appropriate to perform analysis using algorithms that can determine the cause-consequence relationships change the basic parameters of the design. Taking in to consideration multi-factors task is the most appropriate algorithm based on the use of neuron networks. Networks shall let determine the service life of the units in real time, based on modes of generator signals transmitted from the temperature detectors, data on vibration condition.

Author Biographies

А. В. Третьяк, SE plant "Electrotyazhmash"

PhD

П. Г. Гакал, National Aerospace University. NE Zhukovsky «Kharkiv Aviation Institute»

Doctor of Technical Sciences

References

Alekseev A.E. Konstrukcija jelektricheskih mashin / A.E. Alekseev. – M.-L.: Gosjenergoizdat, 1958. – 427 s.

Ja.B. Danilevich, Je.G. Kasharskij Dobavochnye poteri v jelektricheskih mashinah/Gosudarstvennoe jenergeticheskoe izdanie/Moskva/1963 g./214 s.

Kasharskij Je.G. Poteri i nagrev v massivnyh rotorah sinhronnyh mashin / Je.G. Kasharskij, N.B. Chemodanova, A.S. Shapiro. – L.: Nauka, 1968. – 200 s.

Syromjatnikov I. A. Rezhimy raboty sinhronnyh generatorov / I. A. Syromjatnikov. – M.-L.: Gosjenergoizdat, 1952. – 198 s.

IEEE 522-1992. Guide for Testing Turn-to-Turn Insulation on Form Wound Stator Coils for Alternating Current Rotating Electrical Machines. – Instead of IEEE 522-1977; approved 04.01.1993. – American National Standards Institute, 1993. – 19 r. – www.docin.com/p-391407879.html.

Nailen R.L. Are Those New Motor Maintenance Tests Really That Great? / R.L. Nailen // Electrical Apparatus Magazine, January, 2000. – R. 31-35.

Battiti, R., "First and second order methods for learning: Between steepest descent and Newton's method," Neural Computation, vol. 4, no. 2, pp. 141-166, 1992.

Caudill, M., Neural Networks Primer, San Francisco, CA: Miller Freeman Publications, 1989.

Caudill, M., and C. Butler, Understanding Neural Networks: Computer Explorations, Vols. 1 and 2, Cambridge, MA: the MGG Press, 1992.

Published

2015-12-31

Issue

Section

Heat transfer in engineering constructions