Математичне моделювання зародження тріщини в композиті при вигині

Автор(и)

  • Sh. G. Hasanov Азербайджанський технічний університет, м. Баку, Азербайджан, Азербайджан

Ключові слова:

зв’язувальне, включення, пластина з композитного матеріалу, згинання, зони перед руйнування, тріщиноутворення

Анотація

Відомо, що багатокомпонентні структури більш надійні та довговічні, ніж однорідні. На етапі проектування нових конструкцій з композиційних матеріалів необхідно враховувати випадки, коли у матеріалі можуть з'явитися тріщини. Метою цього дослідження є побудова розрахункової моделі для композитного тіла, що включає зв'язування, це дає змогу розрахувати граничні зовнішні згинальні навантаження, за яких відбувається розтріскування в композиті. Розглянуто тонку пластину із пружного ізотропного середовища (матриці) та розподілених в ній включень (волокон) з іншого пружного матеріалу в плиті під час згинання. Проведено математичний опис моделі зародження тріщини у зв'язувальному композиті під час згинання. Використовується теорія аналітичних функцій та метод степеневих рядів. Визначення невідомих параметрів, що характеризують зародкову тріщину, зводиться до розв’язання сингулярного інтегрального рівняння. Побудовано замкнуту систему нелінійних алгебраїчних рівнянь, розв'язок якої дозволяє прогнозувати тріщиноутворення в композиті під час згинання залежно від геометричних та механічних характеристик з’єднувального та включень. Сформульовано критерій зародження тріщини в композиті під впливом згинних навантажень. Розмір обмежувальної мінімальної зони попередньої фракції, за якої відбувається зародження тріщини, рекомендується розглядати як конструктивну характеристику з’єднувального матеріалу.

Біографія автора

Sh. G. Hasanov, Азербайджанський технічний університет, м. Баку, Азербайджан

д-р техн. наук

Посилання

Greco F., Leonetti L., Lonetti P. A. (2013). Two-Scale Failure Analysis of Composite Materials in Presence of Fiber/Matrix Crack Initiation and Propagation. Composite Structures. Vol. 95. pp. 582–597.

Brighenti R., Carpinteri A., Spagnoli A., Scorza D. (2013). Continuous and Lattice Models to Describe Crack Paths in Brittle–Matrix Composites with Random and Unidirectional Fibres.Eng.Fracture Mech. Vol. 108. pp. 170–182.

Mirsalimov V. M., Hasanov F. F. (2014). Interaction Between Periodic System of Rigid Inclusions and Rectilinear Cohesive Cracks in an Isotropic Medium Under Transverse Shear. Acta Polytechnica Hungarica. Vol. 11(5). pp. 161–176.

Hasanov F. F. (2014). Razrushenie kompozita, armirovannogo odnonapravlennymi voloknami. Mekhanika kompozit. materialov [Fracture of a Composite Reinforced by Unidirectional Fibers]. Mech. Composite Materials. Vol. 50. pp. 593–602 (in Russian).

Mirsalimov V. M., Hasanov F. F. (2014). Vzaimodeystvie periodicheskoy sistemy inorodnykh uprugikh vklyucheniy, poverkhnost kotorykh ravnomerno pokryta odnorodnoy tsilindricheskoy plenkoy, i dvukh sistem pryamolineynykh treshchin s kontsevymi zonami. Problemy mashinostroeniya i nadezhnosti mashin [Interaction of a Periodic System of Foreign Elastic Inclusions Whose Surface is Uniformly Covered with a Homogeneous Cylindrical Film and Two Systems of Straight Line Cracks with End Zones]. J Machinery Manufacture and Reliability. Vol. 43. pp. 408–415 (in Russian).

Hao W.,YaoX., Ma Y., Yuan Y. (2015). Experimental Study on Interaction Between Matrix Crack and Fiber Bundles Using Optical Caustic Method.Eng.Fracture Mech. Vol. 134. pp. 354–367.

Hasanov F. F. (2014). Modelirovanie zarozhdeniya treshchiny sdviga v volokne kompozita, armirovannogo odnonapravlennymi voloknami. Problemy. mashinostroeniya. [Modelling of Crack Nucleation in the Fibre of Composite Reinforced with Unidirectional Fibres Under Shear]. J. Mech.Eng. Vol. 17 (2). pp. 17–25 (in Russian).

Hasanov F. F. (2014). Zarozhdenie treshchiny v kompozite, armirovannom odnonapravlennymi ortotropnymi voloknami pri prodolnom sdvige. Mekhanika mashin, mekhanizmov i materialov [Nucleation of the Crack in a Composite with Reinforced Unidirectional Orthotropous Fbers at Longitudinal Shear]. Mech. Machines, Mechanisms and Materials. Vol. 2. pp. 45–50 (in Russian).

Kayumov R. A., Lukankin S. A., Paymushin V. N., Kholmogorov S. A. (2015). Identifikatsiya mekhanicheskikh kharakteristik armirovannykh voloknami kompozitov. Uch. zap.Kazan. un-ta. Ser. Fiz.-mat. nauki [Identification of Mechanical Properties of Fiber-Reinforced Composites].Proc.KazanUniversity. Physics and Mathematics Series. Vol. 157 (4). pp. 112–132 (in Russian).

Mirsalimov V. M., Hasanov F. F. (2015). Vzaimodeystvie periodicheskoy sistemy inorodnykh vklyucheniy i kogezionnykh treshchin pri prodolnom sdvige. Stroit. mekhanika inzh. konstruktsiy i sooruzheniy [Interaction of Periodic System Heterogeneous Inclusions and Cohesive Cracks Under Longitudinal Shear]. Structural Mech.Eng.Constructions and Buildings. Vol. (2). pp. 18–28 (in Russian).

Polilov A. N. (2014). Mekhanizmy umensheniya kontsentratsii napryazheniy v voloknistykh kompozitakh. Prikl. mekhanika i tekhn. fizika [Mechanisms of Stress Concentration Reduction in Fiber Composites]. J Appl. Mech. and Techn. Physics. Vol. 55. pp. 154–163 (in Russian).

Mirsalimov V. M., Askarov V. A. (2016). Minimizatsiya parametrov razrusheniya v kompozite pri izgibe. Mekhanika kompozit. materialov [Minimization of Fracture Parameters of a Composite at Bending]. Mech. Composite Materials. Vol. 51. pp. 737–744 (in Russian).

Mokhtari A., Ouali M. O., Tala-Ighil N. (2015). Damage Modelling in Thermoplastic Composites Reinforced with Natural Fibres Under Compressive Loading. Int J Damage Mech. Vol. 24. pp. 1239–1260.

Mirsalimov V. M, Askarov V. A. (2016). Minimizatsiya koeffitsientov intensivnosti napryazheniy dlya kompozita, armirovannogo odnonapravlennymi voloknami pri izgibe. Vestn.Chuvash. ped. un-ta im. I. Ya. Yakovleva. Ser.: Mekhanika predelnogo sostoyaniya. [Minimization of Stress Intensity Factors for Composite Reinforced by Unidirectional Fibers at Bending].VestnikI.Yakovlev Chuvach State Pedagogical University. Series: Mechanics of a limit state. Vol. 3. pp. 105–116 (in Russian).

Mirsalimov V. M., Hasanov F. F. (2015). Nucleation of Cracks in an Isotropic Medium with Periodic System of Rigid Inclusions Under Transverse Shear. Acta Mechanica. Vol. 226. pp. 385–395.

Kruminsh Ya., Zesers A. (2015). Eksperimentalnoe issledovanie razrusheniya betona, armirovannogo gibridnymi voloknami. Mekhanika kompozit. materialov [Experimental Investigation of the Fracture of Hybrid-Fiber-Reinforced Concrete]. Mech. Composite Materials. Vol. 51(1). pp. 25–32 (in Russian).

Tang C. (2015). A Study of Crack-Fiber Interaction in Fiber-Reinforced Composites Using Optical Caustic Method. PolymerEng.and Sci. Vol. 55. pp. 852–857.

Takeda T., Narita F. (2017). Fracture Behavior and Crack Sensing Capability of Bonded Carbon Fiber Composite Joints with Carbon Nanotube-Based Polymer Adhesive Layer Under Mode I Loading. Composites Sci. and Technology. Vol. 146. pp. 26–33.

Ju J. W., Wu Y. (2016). Stochastic Micromechanical Damage Modeling of Progressive Fiber Breakage for Longitudinal Fiber-Reinforced Composites. Int J. Damage Mech. Vol. 25. pp. 203–227.

Babaei R., Farrokhabadi A. A. (2017). Computational Continuum Damage Mechanics Model for Predicting Transverse Cracking and Splitting Evolution in Open Hole Cross-Ply Composite Laminates. Fatigue & FractureEng.Materials & Structures. Vol. 40 (3). pp. 375–390.

Bakhshan H., Afrouzian A., Ahmadi H., Taghavimehr M. (2017). Progressive Failure Analysis of Fiber-Reinforced Laminated Composites Containing a Hole. Int J. Damage Mech.; https://doi.org/10.1177/1056789517715088.

Cameselle-Molares A., Sarfaraz R., Shahverdi M., Keller T., Vassilopoulos A. P. (2017). Fracture Mechanics-Based Progressive Damage Modelling of Adhesively Bonded Fibre-Reinforced Polymer Joints. Fatigue & FractureEng.Materials & Structures. Vol. 40. pp. 2183–2193.

Mirsalimov V. M. (1987). Neodnomernye uprugoplasticheskie zadachi [Non-One-Dimensional Elastoplastic Problems].Moscow: Nauka (in Russian).

Panasyuk V. V. (1991). Mekhanika kvazikhrupkogo razrusheniya materialov [Mechanics of Quasibrittle Fracture of Materials].Kiev: Naukova Dumka (in Russian).

Rusinko A., Rusinko K. (2011). Plasticity and Creep of Metals.Berlin; Springer.

Muskhelishvili N. I. (1977). Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti [Some Basic Problem of Mathematical Theory of Elasticity].Amsterdam: Kluwer Academic (in Russian).

Panasyuk V. V., Savruk M. P. and Datsyshyn A. P. (1976). Raspredelenie napryazheniy okolo treshchin v plastinakh i obolochkakh [The Stress Distribution Around Cracks in Plates and Shells].Kiev: Naukova Dumka (in Russian).

Savruk M. P. (1981). Dvumernye zadachi uprugosti dlya tel s treshchinami [Two-Dimensional Problem of Elasticity for Bodies with Cracks].Kiev: Naukova Dumka (in Russian). City>: Kluwer Academic, 1977. 707 p (in Russian).

Panasyuk V. V., Savruk M. P. and Datsyshyn A. P. Raspredelenie napryazheniy okolo treshchin v plastinakh i obolochkakh [The Stress Distribution Around Cracks in Plates and Shells].Kiev: Naukova Dumka, 1976. 443 p. (in Russian).

Savruk M. P. Dvumernye zadachi uprugosti dlya tel s treshchinami [Two-Dimensional Problem of Elasticity for Bodies with Cracks].Kiev: Naukova Dumka, 1981. 324 p. (in Russian).

Опубліковано

2018-06-26

Номер

Розділ

Динаміка і міцність машин