Динамічні процеси при ударній взаємодії елементів системи відділення обтічника ракети через пластичний демпфер

Автор(и)

  • Boris F. Zaytsev Інститут проблем машинобудування ім. А.М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), Україна
  • Aleksandr V. Asayеnok Інститут проблем машинобудування ім. А.М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), Україна
  • Tatyana V. Protasova Інститут проблем машинобудування ім. А.М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), Україна
  • Dmitriy V. Klimenko Державне підприємство «Конструкторське бюро «Південне» ім. М.К. Янгеля» (49008, Україна, м. Дніпро, вул. Криворізька, 3), Україна
  • Dmitriy V. Akimov Державне підприємство «Конструкторське бюро «Південне» ім. М.К. Янгеля» (49008, Україна, м. Дніпро, вул. Криворізька, 3), Україна
  • Vladimir N. Sirenko Державне підприємство «Конструкторське бюро «Південне» ім. М.К. Янгеля» (49008, Україна, м. Дніпро, вул. Криворізька, 3), Україна

Ключові слова:

обтічник, система відділення, удар, напруження, контакт, демпфер, пластичність

Анотація

Статтю присвячено актуальним питанням забезпечення динамічної міцності елементів ракетної техніки під час використання піротехнічних засобів. Досліджується ударна взаємодія вузлів піротехнічної системи відділення обтічника ракети в другій фазі роботи системи за так званого «підхоплення». Контактування вузлів системи відбувається через пружно-пластичний демпфер. Демпфер встановлюється між рухомою та нерухомою частинами для «пом’якшення» удару за рахунок пластичної деформації. Демпфер виконує роль одностороннього зв’язку – обмежує стискання та не перешкоджає відриву. Приймається, що конструкція в цілому є пружною, а пластичне деформування зосереджене в демпфері. Механічна модель подається у вигляді комбінації пружних елементів й нелінійного демпфера. Методика врахування нелінійності демпфера побудована на введенні змінних граничних сил торцями демпфера. За пластичних деформацій стискання граничні сили збільшують деформацію, яка стримується пружними силами, а у разі порушення контакту – відриву – повністю компенсують напруження в моделі демпфера, занулюючи їх. Побудовано тривимірну розрахункову модель складеної конструкції обтічника в зборі. Демпфер подається у вигляді суцільного тонкого кільця. Використовується метод скінченних елементів. Розрахунок динаміки конструкції за часом виконується скінченно-різницевим методом Вільсона. Проведено верифікацію методики на тестовій задачі з відомим хвильовим розв’язком. Виконано розрахункові дослідження динамічного напруженого стану за деяких швидкостей удару для варіантів демпфера з різною пластичною жорсткістю: сталевого пружного (демпфер без отворів, «жорсткий», для порівняння); первинного (демпфер з отворами, пластичний, м’який) та раціонального (демпфер з підібраною характеристикою жорсткості). Показано, що первинний демпфер не є ефективним внаслідок недостатньої жорсткості. Визначені характеристики пластичної жорсткості, за яких динамічні напруження значно знижені відносно первинної конструкції. Максимальні динамічні напруження в піротехнічній системі відділення обтічника з раціональними демпферами сильно залежать від швидкості удару. За значних швидкостей вони перевищують границю пластичності. Більш точну постановку задачі «підхоплення» слід виконати з урахуванням пластичності у всій конструкції.

Біографії авторів

Boris F. Zaytsev, Інститут проблем машинобудування ім. А.М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10)

Доктор технічних наук

Aleksandr V. Asayеnok, Інститут проблем машинобудування ім. А.М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10)

Кандидат технічних наук

Tatyana V. Protasova, Інститут проблем машинобудування ім. А.М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10)

Кандидат технічних наук

Dmitriy V. Klimenko, Державне підприємство «Конструкторське бюро «Південне» ім. М.К. Янгеля» (49008, Україна, м. Дніпро, вул. Криворізька, 3)

Кандидат технічних наук

Vladimir N. Sirenko, Державне підприємство «Конструкторське бюро «Південне» ім. М.К. Янгеля» (49008, Україна, м. Дніпро, вул. Криворізька, 3)

Кандидат технічних наук

Посилання

Potapov, A. M., Kovalenko, V. A., & Kondratyev, A. V. (2015). Sravneniye golovnykh obtekateley sushchestvuyushchikh i perspektivnykh otechestvennykh raket-nositeley i ikh zarubezhnykh analogov [Comparison of head fairings of existing and promising domestic carrier rockets and their foreign counterparts]. Aviats.-kosm. tekhnika i tekhnologiya − Aerospace Technic and Technology, no. 1 (118), pp. 35–43 [in Russian].

Rusin M. Yu., Romashin, A. G., & Kamnev, P. I. (2004). Opyt razrabotki golovnykh obtekateley letatelnykh apparatov [Experience in development of head fairings for flying vehicles]. Aviats.-kosm. tekhnika i tekhnologiya − Aerospace Technic and Technology, no. 5(13), pp. 63–69 [in Russian].

Mossakovskiy, V. I., Makarenkov, A. G., Nikitin, P. I., & Savvin, Yu. I.(1990). Prochnost raketnykh konstruktsiy: Ucheb. posobiye [Strength of rocket structures: Training manual. B. I. Mossakovskii (Ed.).Moscow: Vysshaya shkola, 359 p. [in Russian].

Kolesnikov, K. S., Kokushkin, V. V., Borzykh, S. V., & Pankova, N. V. (2006). Raschet i proyektirovaniye sistem razdeleniya stupeney raket: Ucheb. posobiye [Calculation and design of separation systems of rocket stages: Training manual].Moscow: Izd-vo MGTU im. N. E. Baumana, 376 p. [in Russian].

Konyukhov, A.S. (2014). Opredeleniye zhestkostnykh i inertsionno-massovykh kharakteristik ortotropnoy gladkoobolochechnoy modeli bikonicheskoy sektsii stvorki golovnogo obtekatelya [Determination of stiffness and inertia-mass characteristics of an orthotropic smooth-shell model of the biconic section of the head cowl flap]. Visnyk NTU «KhPI». Ser.:Transportne Mashynobuduvannia − Bulletin of the NTU 'KhPI'. Series: Transport Machine Building, no.2 (71), pp. 39 − 46 [in Russian].

Tsybenko, A. S., Kryshchuk, N. H., Koniukhov, A. S., Koval, V. P., Aksonenko, A. V., & Trubin, A. V. (2006) Rozrobka adekvatnoi matematychnoi modeli doslidzhennia dynamiky stulok holovnoho obtichnyka rakety-nosiia u protsesi polotu i viddilennia [Development of an adequate mathematical model for studying the dynamics of the nose fairing flaps of a launch vehicle in flight process and separation]. Nauk. visti NTU 'KhPI' − Science News of NTU 'KhPI', no. 6, pp. 139–148 [in Ukrainian].

Shulzhenko, N. G., Zaytsev, B. F., Asayenok, A. V., Protasova, T. V., Klimenko, D.V., Larionov, I. F., & Akimov, D. V. (2017). Dinamika elementov sistemy otdeleniya obtekatelya rakety [Dynamics of elements of the rocket fairing system]. Aviats.-kosm. tekhnika i tekhnologiya − Aerospace Technic and Technology, no. 9. (144), pp. 5–13 [in Russian].

Shulzhenko, N. G., Zaytsev, B. F., Asayenok, A. V., Klimenko, D. V., Batutina, T. Ya., & Burchakov, B. V. (2016). Dinamicheskoye kontaktnoye vzaimodeystviye adapterov kosmicheskoy konstruktsii pri razdelenii [Dynamic contact interaction of adapters of the space structure under separation]. Aviats.-kosm. tekhnika i tekhnologiya − Aerospace Technic and Technology, vol. 22, no. 2, pp. 12–21 [in Russian].

Shulzhenko, M. H., Zaitsev, B. P. , Hontarovskyi, P. P. , Protasova, T. V. , Batutina, T. Ya., & Sheremet, I.V. (2015). Otsinka dynamichnoi reaktsii vuzliv systemy rozdilennia kosmichnoho aparata ta nosiia pry impulsnykh navantazhenniakh [Estimation of the dynamic reaction of spacecraft and launch vehicle separation system units under pulse loads] Kosm. nauka i tekhnolohiia − Space Science and Technology, vol. 21, no. 1, pp. 15–19 [in Ukrainian].

Shulzhenko, N. G., Gontarovskiy, P. P., & Zaytsev, B. F. (2011). Zadachi termoprochnosti, vibrodiagnostiki i resursa energoagregatov (modeli, metody, rezul'taty issledovaniy). [Problems of thermal strength, vibrodiagnostics and resource of power units (models, methods, results of research): Monograph].Saarbrücken,Germany: LAP LAMBERT Academic Publishing GmbH & Co. KG, 370 p. [in Russian].

Bate, K., & Vilson, Ye. (1982). Chislennyye metody analiza i metod konechnykh elementov [Numerical analysis methods and the finite element method].Moscow: Stroyizdat, 448 p. [in Russian].

I.A. Birger & B.F. Shorr (Eds.). (1975). Termoprochnost detaley mashin [Thermal strength of machine parts.Moscow: Mashinostroyeniye, 455 p. [in Russian].

A.S Sakharov & I.Altenbach (Eds.). (1982). Metod konechnykh elementov v mekhanike tverdykh tel [The finite element method in the mechanics of solids). Kyiv: Vyshcha shkola, 480 p. [in Russian].

Timoshenko, S. P., & Gudyer, Dzh. (1975). Teoriya uprugosti [Theory of elasticity]. Moscow: Nauka, 576 p. [in Russian].

Опубліковано

2018-10-11

Номер

Розділ

Динаміка і міцність машин