Методика зниження матеріаломісткості хвостових відсіків ракет-носіїв

Автор(и)

  • Maksym O. Dehtiarov Державне підприємство «Конструкторське бюро «Південне» ім. М. К. Янгеля» (49008, Україна, м. Дніпро, вул. Криворізька, 3), Україна
  • Anatolii P. Dziuba Державне підприємство «Конструкторське бюро «Південне» ім. М. К. Янгеля» (49008, Україна, м. Дніпро, вул. Криворізька, 3), Україна https://orcid.org/0000-0001-6331-7783
  • Konstantin V. Avramov Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), Україна https://orcid.org/0000-0002-8740-693X
  • Volodymyr M. Sirenko Державне підприємство «Конструкторське бюро «Південне» ім. М. К. Янгеля» (49008, Україна, м. Дніпро, вул. Криворізька, 3), Україна https://orcid.org/0000-0002-8152-2358

Ключові слова:

ракета-носій, хвостовий відсік, матеріаломісткість, напружено-деформований стан

Анотація

Розроблено методику зниження матеріаломісткості високонапружених хвостових відсіків ракет-носіїв з урахуванням обмежень міцності, стійкості і технологічних вимог. Як розрахункова схема хвостового відсіку приймається оребрена в поздовжньому і поперечному напрямках вафельна циліндрична оболонка з прямокутними отворами, нижній торець якої затиснений в місцях розташування опорних кронштейнів, а верхній навантажений рівномірно розподіленими по контуру поздовжніми стискальними зусиллями від дії ваги розташованих вище елементів конструкції. Алгоритм оптимізації побудований за принципом забезпечення дискретної рівноміцності окремих елементів (підконструкцій). Конструктивні геометричні розміри перерізів штатного хвостового відсіку і жорсткісні параметри поздовжнього і поперечного силових наборів, товщини стінок оболонкових елементів, розміри вафельних обичайок та ін., вибираються з вимог міцнісної надійності: обмежень граничних значень еквівалентних напружень (умов міцності), стискальних напружень місцевої і загальної втрати стійкості і цілого ряду конструктивних і технологічних вимог. Прямий розрахунок хвостового відсіку і пошук його варійованих геометричних параметрів пропонується здійснювати з використанням інтерактивного числово-аналітичного (метод скінченних елементів – інженерний аналіз) алгоритму.  Початковий розрахунок статичного напружено-деформованого стану вафельного хвостового відсіку проводився методом скінченних елементів, який реалізований в пакеті NASTRAN. Для дискретизації оболонки та її оребрення використовувалися плоскі скінченні елементи. В процесі скінченноелементного числового моделювання стану хвостового відсіку проводився аналіз вірогідності отриманих результатів розрахунку еквівалентних напружень шляхом дослідження процесів збіжності результатів розрахунків на серії сіток з різним подрібненням. Наведено результати застосування розробленої методики до зниження ваги штатного хвостового відсіку ракети-носія «Антарес».

Біографії авторів

Anatolii P. Dziuba, Державне підприємство «Конструкторське бюро «Південне» ім. М. К. Янгеля» (49008, Україна, м. Дніпро, вул. Криворізька, 3)

Доктор технічних наук

Konstantin V. Avramov, Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10)

Доктор технічних наук

Volodymyr M. Sirenko, Державне підприємство «Конструкторське бюро «Південне» ім. М. К. Янгеля» (49008, Україна, м. Дніпро, вул. Криворізька, 3)

Кандидат технічних наук

Посилання

Degtyarev, A. V. (2014). Raketnaya tekhnika. Problemy i perspektivy [Rocket technology. Problems and prospects]: Selected scientific and technical publications.Dnepropetrovsk: ART-PRESS, 420 p.

Mossakovskiy, V. I., Makarenkov, A. G., Nikitin, P. I., Savin, Yu. I., & Spiridonov, I. N. (1990). Prochnost raketnykh konstruktsiy [Strength of rocket structures].Moscow: Vysshaya shkola, 358 p.

Balabukh, L. I., Kolesnikov, K. S., Zarubin, V. S., Alfutov, N. A., Usyukin, V. I., & Chizhov, V. F. (1969). Osnovy stroitelnoy mekhaniki raket [Fundamentals of structural mechanics of rockets].Moscow: Vysshaya shkola, 496 p.

Usyukin, V. I. (1988). Stroitelnaya mekhanika konstruktsiy kosmicheskoy tekhniki [Structural mechanics of structures of space technology].Moscow: Mashinostroyeniye, 392 p.

Kurenkov, V. I. & Yumashev, L. P. (2005). Vybor osnovnykh proyektnykh kharakteristiki konstruktivnogo oblika raket nositeley [Choice of the main design characteristics of the design of the carrier rockets]. Samara: Samara Aerospace University, 240 p.

Degtyarev, M. A. & Avramov, K. V. (2019). Numerical simulation of the stress-strain state of the rocket pretention module. Strength of Materials, vol. 51, iss. 5, pp. 707–714. https://doi.org/10.1007/s11223-019-00119-z.

Degtyarev, M. А., Shapoval, A. V., Gusev, V. V., Avramov, K. V., & Sirenko, V. N. (2019). Structural optimization of waffle shell sections in launch vehicles. Strength of Materials, vol. 51, iss. 2, pp. 223–230. https://doi.org/10.1007/s11223-019-00068-7.

Lizin, V. T. & Pyatkin, V. A. (1985). Proyektirovaniye tonkostennykh konstruktsiy [Design of thin-walled structures]. Moscow: Mashinostroyeniye, 344 p.

Manevich, A. I. (1979). Ustoychivost i optimalnoye proyektirovaniye podkreplennykh obolochek [Stability and optimal design of reinforced shells]. Kiyev; Donetsk: Vysshaya shkola, 152 p.

Obraztsov, I. F. (Eds.) (1986). Stroitelnaya mekhanika letatelnykh apparatov [Building mechanics of aircraft]. Moscow: Mashinostroyeniye, 536 p.

Malkov, V. P. & Ugodchikov, A. G. (1981). Optimizatsiya uprugikh sistem [Optimization of elastic systems]. Moscow: Nauka, 288 p.

Himmelblau, D. M. (1972). Applied nonlinear programming. New York: McGraw-Hill Education - Europe, 416 p.

Dziuba, A. P., Sirenko, V. M., Dziuba, A. A., & Safronova, I. A. (2018). Modeli ta alhorytmy optymizatsii elementiv neodnoridnykh obolonkovykh konstruktsii [Models and algorithms for optimizing elements of inhomogeneous shell structures]: in Aktualni problemy mekhaniky [Actual problems of mechanics] by Poliakov, M. V. (Eds.). Dnipropetrovsk: Lira, pp. 225–243.

Hudramovich, V. S. & Dzyuba, A. P. (2009). Contact interaction and optimization of locally loaded shell structures. Journal of Mathematical Sciences, vol. 162, pp. 231–245. https://doi.org/10.1007/s10958-009-9634-5.

Gudramovich, V. S., Gart, E. L., Klimenko, D. V., Tonkonozhenko, A. M., & Ryabokon, S. A. (2011). Konechno-elementnyy analiz uprugo-plasticheskogo napryazhenno-deformirovannogo sostoyaniya otsekov raketnykh konstruktsiy s vyrezami [Finite-element analysis of the elastic-plastic stress-strain state of the compartments of rocket structures with cutouts]. Tekhnicheskaya mekhanika – Technical Mechanics, vol. 4, pp. 52–61.

Razani, R. (1965). Behavior of fully stressed design of structures and its relationship to minimum-weight. AIAA Journal, vol. 3, no. 12, pp. 115–124. https://doi.org/10.2514/3.3355.

Karmishin, A. V., Lyaskovets, V. A., Myachenkov, V. I., & Frolov, A. N. (1975). Statika i dinamika tonkostennykh obolochechnykh konstruktsiy [Statics and dynamics of thin-walled shell structures]. Moscow: Mashinostroyeniye, 376 p.

Degtyarev, M. A., Danchenko, V. G., Shapoval, A. V., Avramov, K. V. (2019). Experimental strength analysis of variable stiffness waffle-grid cylindrical compartments. Part 1. Experimental procedure. Journal of Mechanical Engineering, vol. 22, no. 1, pp. 33–36. https://doi.org/10.15407/pmach2019.01.033.

Degtyarev, М. А., Danchenko, V. G., Shapoval, A. V., & Avramov, K. V. (2019). Experimental strength analysis of variable stiffness waffle-grid cylindrical compartments. Part 2. Analysis results. Journal of Mechanical Engineering, vol. 22, no. 2, pp. 31–36. https://doi.org/10.15407/pmach2019.02.031.

Опубліковано

2020-09-30

Номер

Розділ

Динаміка і міцність машин