Напружено-деформований стан замкового з'єднання парової турбіни в умовах пластичного деформування

Автор(и)

  • Ihor A. Palkov Акціонерне товариство «Турбоатом» (61037, Україна, м. Харків, пр. Московський, 199), Україна https://orcid.org/0000-0002-4639-6595
  • Mykola H. Shulzhenko Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), Україна https://orcid.org/0000-0002-1386-0988

Ключові слова:

турбіна, замкове з'єднання, робоча лопатка, напружений стан, крива деформування, границя текучості

Анотація

Розв’язується задача про напружено-деформований стан замкового з'єднання робочих лопаток 1-го ступеня циліндра середнього тиску в умовах пластичного деформування. Під час розв’язання задачі використовується теорія пружно-пластичних деформацій. Розв’язання задачі здійснюється з використанням двох різних підходів до задання кривих пластичного деформування. Оцінюється можливість застосування більш простої білінійної апроксимації взамін класичної мультилінійної. На прикладі розв'язання даної задачі показано час, необхідний для виконання розрахунку при використанні білінійної та мультилінійної апроксимацій. Порівняння отриманих результатів у вигляді розподілу пластичних деформацій, еквівалентних напружень і контактних напружень по опорних площадках дало можливість оцінити відмінність під час використання двох типів апроксимації. Отримане значення похибки результатів під час використання білінійної апроксимації дозволило зробити висновки про можливість застосування такого підходу до обробки кривих пластичного деформування для розв’язання подібного роду задач. Розв’язання задачі здійснюється за допомогою методу скінченних елементів. Щоб об'єктивно оцінити вплив пластичного деформування на перерозподіл навантажень в замковому з'єднанні, використовується модель, отримана під час розв’язання задачі про термонапружений стан замкового з'єднання робочих лопаток. Показано розподіл контактних напружень в замковому з'єднанні. Проведено порівняння результатів з отриманими раніше під час розв’язання задачі термопружності. Відзначено суттєві відмінності рівня контактних зусиль. Наводяться результати розрахункової оцінки напружено-деформованого стану замкового з'єднання робочих лопаток першого ступеня циліндра середнього тиску парової турбіни, що дозволяють охарактеризувати ступінь релаксації і перерозподілу напружень в конструкції порівняно з результатами, отриманими раніше під час розв’язання задачі термопружності. Зроблено висновки щодо економічної доцільності використання поданої методики розрахунку.

Біографія автора

Mykola H. Shulzhenko, Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10)

Доктор технічних наук

Посилання

(2002). Metodicheskiye ukazaniya po rassledovaniyu prichin povrezhdeniy detaley rotorov parovykh turbin elektrostantsiy [Guidelines for investigating the causes of damage to rotor parts of steam turbines of power plants]: Regulatory document RD 153-34.1-17.424-2001.Moscow: All-Russia Thermal Engineering Institute (JSC "VTI"), 82 p. (in Russian).

Shvetsov, V. L., Litovka, V. A., Palkov I. A., & Palkov S. A. (2012). Issledovaniye napryazhenno-deformirovannogo sostoyaniya zamkovogo soyedineniya rabochikh lopatok [Investigation of the stress-strain state of the lock joint of rotor blades]. Problemy mashinostroyeniya – Journal of Mechanical Engineering, vol. 15, no. 2, pp. 31–36 (in Russian).

Shvetsov, V. L., Gubskiy, A. N., Palkov, I. A., & Palkov, S. A. (2012). Prochnost vysokonapryazhennykh elementov parovoy turbiny [Strength of high-stressed elements of a steam turbine]. Vestnik NTU «KhPI». Seriya: Energeticheskiye i teplotekhnicheskiye protsessy i oborudovaniye – Bulletin of NTU "KhPI". Series: Power and Heat Engineering Processes and Equipment, no. 7, pp. 70–75 (in Russian).

Shulzhenko, N. G., Grishin, N. N., & Palkov I.A. (2013). Napryazhennoye sostoyaniye zamkovogo soyedineniya rabochikh lopatok turbiny [Stressed state of the lock joint of turbine blades]. Problemy mashinostroyeniya – Journal of Mechanical Engineering, vol. 16, no. 3, pp. 37–45 (in Russian).

Palkov, I. A. & Shulzhenko, M. H. (2019). Thermostressed state of the lock joint of turbine rotor blades of the first stage of K-500-240 steam turbine medium pressure cylinder. Journal of Mechanical Engineering, vol. 22, no. 3, pp. 36–43. https://doi.org/10.15407/pmach2019.03.036.

Gontarovskii, P. P. & Kirkach, B. N. (1982). Investigation of the stress-strain state of turbine blade root attachments by the finite-element method. Strength of Materials, vol. 14, pp. 1037–1041. https://doi.org/10.1007/BF00764561.

Shulzhenko, N. G., Gontarovskiy, P. P., & Zaytsev, B. F. (2011). Zadachi termoprochnosti, vibrodiagnostiki i resursa energoagregatov (modeli, metody, rezultaty issledovaniy) [Problems of thermal strength, vibrodiagnostics and resource of power units (models, methods, results of research)]. Saarbrücken, Germany: LAP LAMBERT Academic Publishing GmbH & Co. KG, 370 p. (in Russian).

Podgornyy, A. N., Gontarovskiy, P. P., Kirkach, B. N., Matyukhin, Yu. I., & Khavin, G. L. (1989). Zadachi kontaktnogo vzaimodeystviya elementov konstruktsiy [Problems of contact interaction of structural elements]. Kiyev: Naukova Dumka, 232 p. (in Russian).

Shtayerman, I. Ya. (1949). Kontaktnaya zadacha teorii uprugosti [Contact problem of elasticity theory]. Moscow: Gostekhizdat, 270 p. (in Russian).

(1962). O tenzometricheskikh ispytaniya modeley zamkovogo soyedineniya rabochikh lopatok TsSD turbiny K-500-240 [On strain-gauge testing of models of the lock joint of the rotor blades of the medium pressure cylinder of the K-500-240 turbine]: Report on research work No. D-1561; Research Director – Mellerovich, G. M. Kharkov: OJSC "Turboatom", 156 p. (in Russian).

Birger, I. A., Shorr, B. F., & Demyanushko, I. V. (1975). Termoprochnost detaley mashin [Thermal strength of machine parts]. Moscow: Mashinostroyeniye, 455 p. (in Russian).

Garmash, N. G. & Gontarovskiy, V. P. (2001). Napryazhennoye sostoyaniye zamkovogo soyedineniya lopatok gazovoy turbiny v ramkakh termokontaktnoy zadachi [Stress state of the lock joint of gas turbine blades in the framework of the thermal contact problem]. Problemy mashinostroyeniya – Journal of Mechanical Engineering, vol. 4, no. 3–4, pp. 12–16 (in Russian).

Thompson, M. K. & Thompson, J. M. (2017). ANSYS Mechanical APDL for Finite Element Analysis. Elsevier, 803 p.

Liberman, L. Ya. & Peysikhis M. I. (1997). Svoystva staley i splavov, primenyayemykh v kotloturbostroyenii [Properties of steels and alloys used in boiler turbine construction]: Reference book in 3 vols. Leningrad: JSC I. I. Polzunov Scientific and Development Association on the Research and Design of Power Equipment (in Russian).

Malinin, N. N. (1975). Prikladnaya teoriya plastichnosti i polzuchesti [Applied theory of plasticity and creep]. Moscow: Mashinostroyeniye, 400 p. (in Russian).

Kaminskiy, A. A. & Bastun, V. N. (1985). Deformatsionnoye uprochneniye i razrusheniye metallov pri peremennykh protsessakh nagruzheniya [Deformation hardening and destruction of metals at variable loading processes]. Kiyev: Naukova dumka, 168 p. (in Russian).

Zubchaninov, V. G. (1990). Osnovy teorii uprugosti i plastichnosti [Fundamentals of the theory of elasticity and plasticity]. Moscow: Vysshaya shkola, 368 p. (in Russian).

Levin, A. V., Borishanskiy, K. N., & Konson, Ye. D. (1981). Prochnost i vibratsiya lopatok i diskov parovykh turbin [Strength and vibration of blades and disks of steam turbines]. Leningrad: Mashinostroyeniye, 710 p. (in Russian).

Опубліковано

2021-01-10

Номер

Розділ

Динаміка і міцність машин