Контактне деформування вузла ущільнення трубопроводу

Автор(и)

  • Andrii O. Kostikov Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), Україна https://orcid.org/0000-0001-6076-1942
  • Serhii A. Palkov Акціонерне товариство «Турбоатом» (61037, Україна, м. Харків, пр. Московський, 199), Україна https://orcid.org/0000-0002-2215-0689

Ключові слова:

турбоустановка, трубопровід, фланцеве з'єднання, контактна задача, напружено-деформований стан, контактний тиск

Анотація

Досліджено особливості напружено-деформованого стану сполучного вузла паропроводу турбоустановки на основі використання тривимірної розрахункової моделі конструкції і поверхонь, що контактують між собою. Вузол, що розглядається, включає в себе власне трубопровід, обжимний кожух, що складається з двох половин, в одній з яких встановлено відведення, і прокладку-ущільнювач. Сформовано математичну модель, що враховує механічні навантаження, які викликані як внутрішнім тиском пари на стінку паропроводу, так і затягуванням кріплень кожуха. Розглянута модель також включає контактну взаємодію в вузлі ущільнення на контактних поверхнях трубопроводу, верхньої та нижньої половин кожуха. Запропоновано методику розв'язання даної контактної задачі, яка ґрунтується на використанні методу скінченних елементів. В основу скінченноелементної моделі покладено двадцативузлові тривимірні скінченні елементи з трьома ступенями свободи в кожному вузлі. Для опису контакту і ковзання між поверхнями використовувалися восьмивузлові контактні скінченні елементи. Врахування контактних умов здійснювалося за допомогою методу штрафних функцій. Проведено верифікацію моделі і програмного забезпечення, що реалізує запропоновану методику, шляхом порівняння результатів розрахунку і експериментальних даних, які отримані на фізичній моделі трубопроводу. Фізична модель була виготовлена з низькомодульного матеріалу з дотриманням повної геометричної подібності і такого ж співвідношення модулів пружності матеріалів, як і в реальному об'єкті. Визначено напружено-деформований стан сполучного вузла реального трубопроводу в тривимірній постановці і виявлено найбільш напружені зони в вузлі, що потребують підвищеної уваги під час проєктування та експлуатації трубопроводів та їх з'єднань. Розроблений підхід і програмне забезпечення дають можливість визначити контактний тиск для фланців горизонтального роз'єму високонапружених корпусів циліндрів потужних парових турбін, що дозволяє уникнути великої кількості дорогих експериментальних досліджень.

Біографія автора

Andrii O. Kostikov, Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10)

член-кореспондент НАН України

Посилання

Kalyutik, A. A. & Sergeyev, V. V. (2003). Truboprovody teplovykh elektricheskikh stantsiy [Pipelines of thermal power plants]: A tutorial.St. Petersburg: Publishing House ofSt. PetersburgPolytechnicUniversity, 50 p. (in Russian).

Prigorovskiy, N. I. & Preyss, A. K. (1958). Issledovaniye napryazheniy i zhestkosti detaley mashin na tenzometricheskikh modelyakh [Study of stresses and stiffness of machine parts on tensometric models].Moscow: AN SSSR, 232 p. (in Russian).

(2011). Issledovaniye vliyaniya konstruktivnykh razmerov kozhukha-troynika na napryazhenno-deformirovannoye sostoyaniye uzla uplotneniya osnovnogo gazoprovoda [Study of the influence of the design dimensions of the tee casing on the stress-strain state of the seal assembly of the main gas pipeline]: Report on research work No. D-4089; Research Director – Kabanov, A. F. Kharkov: Special Design Bureau "Turboatom", 96 p. (in Russian).

Turenko, A. N., Bogomolov, V. A., Stepchenko, A. S., Kedrovskaya, O. V., & Klimenko, V. I. (2003). Kompyuternoye proyektirovaniye i raschet na prochnost detaley avtomobilya [Computer design and strength calculation of car parts]: A tutorial. Kharkiv:KharkivHighwayUniversity, 336 p. (in Russian).

Deryagin, A. A. (2013). Formoobrazovaniye i animatsiya 3D-obyektov na osnove tetragonalnoy regulyarnoy setki [Shaping and animation of 3D objects based on a tetragonal regular grid]. Prikladnaya informatika – Journal of Applied Informatics, no. 2 (44), pp. 94–101 (in Russian).

Tolok, V. A., Kirichevskiy, V. V., Gomenyuk, S. I., Grebenyuk, S. N., & Buvaylo, D. P. (2003). Metod konechnykh elementov. Teoriya, algoritmy, realizatsiya [Method of finite elements. Theory, algorithms, implementation]. Kiyev: Naukova Dumka, 283 p. (in Russian).

Stefancu, A. I., Melenciuc, S. C., & Budescu, M. (2011). Penalty based algorithms for frictional contact problems. The Bulletin of the Polytechnic Institute of Jassy. Section: Architecture. Construction, no. 3, pp. 54–58.

Wriggers, P., Vu Van, T., & Stein, E. (1990). Finite element formulation of large deformation impact-contact problems with friction. Computers & Structures, vol. 37, iss. 3, pp. 319–331. https://doi.org/10.1016/0045-7949(90)90324-U.

Guz, A. N., Chernyshenko, I. S., Chekhov, V. N., Chekhov, V. N., & Shnerenko, K. I. (1974). Tsilindricheskiye obolochki, oslablennyye otverstiyami [Cylindrical shells weakened by holes]. Kiyev: Naukova Dumka, 272 p. (in Russian).

Perlin, A. A., Shalkin, M. K., & Khryashchev, Yu. K. (1967). Issledovaniye prochnosti sudovykh konstruktsiy na tenzometricheskikh modelyakh [Research of the strength of ship structures on tensometric models]. Leningrad: Sudostroyeniye, 80 p. (in Russian).

Gudimov, M. M. & Perov, B. V. (1981). Organicheskoye steklo [Organic glass]. Moscow: Khimiya, 216 p. (in Russian).

(2013). Usovershenstvovaniye i vnedreniye sposoba opredeleniya kontaktnogo davleniya v uzle uplotneniya osnovnogo gazoprovoda po rezultatam tenzometrirovaniya [Improvement and implementation of a method for determining the contact pressure in the seal unit of the main gas pipeline based on the results of strain gauging]: Report on research work No. D-4473; Research Director – Kabanov, A. F. Kharkov: Special Design Bureau "Turboatom", 50 p. (in Russian).

Savin, G. N. (1968). Raspredeleniye napryazheniy okolo otverstiy [Distribution of stresses around the holes]. Kiyev: Naukova Dumka, 891 p. (in Russian).

Prigorovskiy, N. I. (1982). Metody i sredstva opredeleniya poley deformatsiy i napryazheniy [Methods and means for determining the fields of deformations and stresses]. Moscow: Mashinostroyeniye, 248 p. (in Russian).

Опубліковано

2021-01-10

Номер

Розділ

Енергетичне машинобудування