К проблеме восстановления временной зависимости нестационарного воздействия, приложенного к упруго-деформируемому элементу конструкции

Автор(и)

  • И. В. Янчевский Інститут механіки ім. С. П. Тимошенка НАН України, Україна

Ключові слова:

елемент конструкції, нестаціонарна задача, ідентифікація впливу, залежність від часу, принцип суперпозиції, функція впливу

Анотація

Викладена методика ідентифікації залежності від часу нестаціонарного впливу, розподіленого на заданій області конструктивного елемента довільної геометрії, за значеннями величини, яка вважається більш доступною для виміру. У припущенні того, що реакція елемента лінійно залежить від шуканого впливу, розглянута задача зведена до системи лінійних алгебраїчних рівнянь відносно коефіцієнтів, через які шуканий вплив апроксимується кусково-сталою функцією. Для розв’язання системи використовується регуляризуючий алгоритм, який забезпечує стійкість результату до випадкових помилок у вхідних даних і похибок обчислень. Наведені результати конкретних розрахунків, які свідчать про ефективність методики.

Біографія автора

И. В. Янчевский, Інститут механіки ім. С. П. Тимошенка НАН України

доктор фізико-математичних наук

Посилання

Vatulian, A. O. (2007). Inverse problems in mechanics of deformable solids. Moscow, Physmathlit. [in russian]

Yanyutin, E. G., I. V. Yanchevsky, et al. (2004). Problems of impulse deformation of elements of construction. Kharkiv: Publ. of KhNAHU. [in russian]

Doyle, J.F. (2004). Modern experimental stress analysis. Chichester, John Wiley & Sons Ltd.

Maia, N.M.M., Y.E. Lage and M.M. Neves (2012). “Recent advances on force identification in structural dynamics.” In book “Advances in vibration engineering and structural dynamics”, ed. by F. Beltran-Carbajal. Ch. 6: 103-132.

Hu, N., H. Fukunaga, et al. (2007). “An efficient approach for identifying impact force using embedded piezoelectric sensors.” Int. J. of Impact Engineering 34: 1258-1271.

Inoue, H., J.J. Harrigan and S.R. Reid (2001). “Review of inverse analysis for indirect measurement of impact force.” Appl. Mech. Rev. 56: 503-524.

Yan, G. and Li. Zhou (2009). “Impact load identification of composite structure using genetic algorithms.” J. of Sound and Vibration 319: 869-884.

Martin, M.T. and J.F. Doyle (1996). “Impact force identification from wave propagation responses.” Int. J. of Impact Engineering 18: 65-77.

Stevens, K.K. (1987). “Force identification problem – An overview.” Proc. of Spring Conference on Experimental Mechanics. Florida. USA: 838-844.

Boukria, Z., P. Perrotin and A. Bennani (2011). “Experimental impact force location and identification using inverse problems: application for a circular plate.” Int. J. of Mechanics 5(1): 48-55.

Lee, S.-K., S. Banerjee and A. Mal (2007). “Identification of impact force on a thick plate based on the elastodynamic and higher-order time-frequency analysis.” Proc. IMechE. Part C: J. Mechanical Engineering Science 221: 1249-12.

Wang, B.-T. and Ch.-H. Chiu (2003). “Determination of unknown impact force acting on a simply supported beam.” Mech. Systems and Signal Processing 17(3): 683-704.

Gombi, Sh.L. and D.S. Ramakrishna (2012). “A solution to the inverse problem of impact force determination from structural responses.” Int. J. of Engineering and Innovative Technology 1(3): 192-196.

Lage Y.E., N.M.M. Maia, et al. (2013). “Force identification using the concept of displacement transmissibility.” J. of Sound and Vibration 332: 1674-1686.

Wang, B.-T. and Ch.-H. Chiu (1999). “Determination of unknown impact force acting on arbitrary structures.” Proc. Int. Soc. for Optical Engineering 2(3727): 1653-1659.

Turco, E. (2005). “A strategy to identify exciting forces acting on structures.” Int. J. for Num. Meth. in Engineering 64(11): 1483-1508.

Atobe, S., H. Fukunaga and N. Hu (2011). “Impact force identification of CFRP structures using experimental transfer matrices.” CMC 26(1): 67-90.

Chen, Ch., Yu. Li and F.-G. Yuan (2012). “Impact source identification in finite isotropic plates using a time-reversal method: experimental study.” Smart Mater. Struct 21: 105-129.

El Khannoussi, F., A. Hajraoui, A. Khamlichi, et al. (2010). “Reconstruction of a distributed force impacting an elastic rectangular plate.” J. Basic. Appl. Sci. Res. 1(1): 20-30.

Jacquelin, E., A. Bennani and P. Hamelin (2003). “Force reconstruction: analysis and regularization of a deconvolution problem.” J. of Sound and Vibration 265: 81-107.

Allen, M. S. and Th. G. Carne (2008). “Comparison of inverse structural filter (ISF) and sum of weighted accelerations technique (SWAT) time domain force identification methods.” Mech. Systems and Signal Processing 22: 1036-1054.

Soloviev, A. N. (2005). Direct and inverse problems for finite elastic and electroelastic solids. Thesis for a Doctor Degree in Physics and Mathematics. Rostov/Don, Publ. of South Fed. Univ. [in russian]

Romppanen, A.-J. (2008). “Inverse load sensing method for line load determination of beam-like structures.” Thesis for the degree of Doctor of Technology. Tampere University of Technology. Publ. 762.

Beck, J.V., B. St. Blackwell and Ch. R. Jr. Clair (1985). Inverse heat conduction: Ill-posed problems. New York, J. Wiley & Sons.

Matsevityi, Yu. M., A. P. Slesarenko and N.A. Safonov (2008). “Identification of temperature of flame changing due acting it on building structure.” Rep. of NAS of Ukraine 6: 80-86. [in russian]

Uhl, T. (2007). “The inverse identification problem and its technical application.” Arch. of Appl. Mech. 77(5): 325-337.

Biderman, V. L. (1980). The theory of mechanical vibration. Moscow: Vysshaya Shkola. [in russian]

Slepyan, L. I. (1972). Nonstationary elastic waves. Leningrad, Sudostroenie. [in russian]

Tikhonov, A. N., A. V. Goncharsky, et al. (1995). Numerical methods for the solution of ill-posed problems. Dordrecht, Kluwer Academic Publ.

Engl, H.W., Hanke M. and Neubauer A. (1996). Regularization of inverse problems. The Netherlands, Kluwer Academic Publ.

Krawczyk-Stańdo, D., M. Rudnicki (2008). “The use of L-curve and U-curve in inverse electromagnetic modelling.” Intell. Comput. Tech. Appl. Electromagn 119: 73-82.

Hansen, P.C. and D.P. O’Leary (1993). “The use of L-curve in the regularization of discrete ill-posed problems.” SIAM J. Sci. Comput. 14(6): 1487-1503.

Chamorro-Servent, J., J. Aguirre, et al. (2011). “Feasibility of U-curve method to select the regularization parameter for fluorescence diffuse optical tomography in phantom and small animal studies.” Optics Express 19(12): 11490-11506.

Choi, H.G., A.N. Thite and D.J. Thompson (2007). “Comparison of methods for parameter selection in Tikhonov regularization with application to inverse force determination.” J. of Sound and Vibration 304: 894-917.

Hanke, M. and P.C. Hansen (1993). “Regularization methods for large scale problems.” Surv. Math. Ind. 3: 253-315.

Vogel, C.R. (2002). “Computational methods for inverse problems.” SIAM.

Yagola, A. G. (2010). “Ill-posed problems with a priori information.” Electr. Math. Proc. of Siberia: C.343-C.361. [in russian]

Bogush, M. V. (2014). Designing of piezoelectric sensors on the base of spatial electrothermoelastic models. Moscow, Technosphere. [in russian]

Kubenko, V.D. and I.V. Yanchevskii (2013). “Vibrations of a nonclosed two-layer spherical electroelastic shell under impulsive electromechanical loading.” Int. Appl. Mech. 49(3): 303-314.

Yanchich, V. V. (2008). Piezoelectric sensors by vibrational and impact acceleration. Rostov/Don, Publ. of South Fed. Univ. [in russian]

##submission.downloads##

Опубліковано

2015-07-14

Номер

Розділ

Динаміка і міцність машин