Methodological Basis of The UAVs Use for the Weed Detection
Keywords:
UAV, drone, crop monitoring, weed, sunflower, decryption of images, controlled classificationAbstract
Purpose. To work out methodological approaches to the use of quadcopters for weeds assesment. Methods. The shooting was carried out using DJI Phantom Vision 2+ and LadyBug Copper Dot. The LadyBug was shoted in the visible and near-infrared range using the 12-megapixel S100 NDVI UAV-Kit camera with elevations: 20 m, 40 m and 60 m. The DJI Phantom Vision 2+ was shot in the visible range of the GoPro 14 megapixel camera altitudes: 10 m, 15 m, 30 m and 60 m. Decryption of photographs was carried out using the controlled classification method in QGIS and TNTmips programs. Weed accounting was performed on control sites 1m2 by weight method, taking into account their qualitative composition. Results. It is shown that the best results of weed recognition during decoding of images was obtained by the use of controlled classification according to the maximum likelihood method under conditions of shooting from heights up to 40 m. In order to improve the recognition of weeds and separate their image from images of cultivated plants, it is expedient to use the object-oriented analysis. At the stage of sunflower budding, about 30% of the weeds are closed from the remote observation, which led to an automatic underestimation of number of weeds. Conclusions. In order to evaluate the crop contamination, it is possible to successfully use the data from UAVs in a visible range of electromagnetic waves under low altitudes (up to 40 meters) and the use of a controlled classification method for decoding images. For the recognition of weeds, the images in the infrared range do not have advantages over images in the visible range. It is necessary to additionally apply ground-based control of weeds to assess the proportion of "hidden" from remote observation of weeds.
References
Ачасов А. Б., Ачасова А. О., Тітенко Г. В., Селіверстов О. Ю., Сєдов А. О. Щодо використання БПЛА для оцінки стану посівів // Вісник ХНУ імені В.Н. Каразіна. сер. Екологія. 2015. вип. 13. С. 13 – 18.
Савин И.Ю., Вернюк Ю.И., Фараслис И. Возможности использования беспилотных летательных аппаратов для мониторинга продуктивности почв // Бюллетень Почвенного института им. В.В. До-кучаева. 2015. № 80. C. 95-106.
Pfeifer J., Khanna R., Dragos C., Popovic M., Galceran E., Kirchgessner N., Walter A., Siegwart R., Liebisch F. Towards automatic UAV data interpretation for precision farming. Proc. of the International Conf. of Agricultural Engineering (CIGR), 2016
Tokekar P., Hook J. V., Mulla D., Isler V. Sensor planning for a symbiotic UAV and UGV system for precision agriculture, p. 5321-5326. 2013.
Ачасов А. Б., Сєдов А. О., Ачасова А. О. Оцінка забур’яненості посівів соняшника за допомогою безпілотних літальних апаратів // Людина та довкілля. Проблеми неоекології. 2016. № 3-4. С. 69-74.
Шпанев А. М., Лекомцев П. В. Новые подходы к методике учета сорных растений // Защита и ка-рантин растений : ежемесячный журнал для специалистов, ученых и практиков. 2012. N 8. С. 38-41/
Guerrero J. M., Pajares G., Montalvo M., Romeo J., Guijarro M.. Support vector machines for crop/weeds identification in maize fields. Expert Systems with Applications, 39(12):11149 – 11155, 2012;
Guo W., Rage U. K., Ninomiya S. Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model. Computers and Electronics in Agriculture, 96:58– 66, 2013;
Hamuda E., Glavin M., Jones E. A survey of im processing techniques for plant extraction and segmentation in the field. Computers and Electronics in Agriculture, 125:184–199, 2016.
Lottes P., Hoferlin M., Sander S., Muter M., Schulze-Lammers P., Stachniss C.. An effective classification system for separating sugar beets and weeds for precision farming applications. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2016
Некос А. Н., Ачасов А. Б., Кочанов Е. О. Методи вимірювання параметрів навколишнього середо-вища: дистанційні методи : підручник. Х. : ХНУ імені В. Н. Каразіна, 2017. 244 с.
Захист зернових культур від популяції шкідників, хвороб та бур’янів при інтенсивних технологіях / Б.А. Арєшніков, М.П. Гончаренко, М.Г. Костюковський [та ін.]; за ред. Б.А. Арєшнікова. К.: Урожай, 1992. 224 с.
Koot Th. M. Weed detection with Unmanned Aerial Vehicles in agricultural systems. Thesis Report GIRS-2014-37 . - Centre for Geo-Information. Wageningen University. URL: http://edepot.wur.nl/333537
Downloads
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).