Method of hierarchical coordination inter-domain routing in Software-Defined infocommunication network with provision of normalized Quality of Service
DOI:
https://doi.org/10.30837/pt.2019.2.01Keywords:
Method, Routing, Coordination, Domain, Delay, NetworkAbstract
The paper proposes a method of hierarchical coordination of inter-domain routing in software-defined infocommunication network (ICN). The novelty of the method is that the routing solutions obtained with it are aimed not only at increasing the scalability of ICN, but also at ensuring the normalized quality of service in terms of average transmission rate and end-to-end average packet delay. It is based on the use of a decomposition flow-based routing model, which, in turn, is based on the conditions of inter-domain routing interaction and the conditions of ensuring the normalized quality of service, which are obtained on the basis of tensor modeling of ICN in the geometric space created by coordinate paths. Within the proposed method, the inter-domain QoS routing problem was presented in an optimization form with a quadratic optimality criterion, which was solved according to the principle of targeted coordination from the theory of hierarchical multilevel control systems. During the investigation of the proposed method of inter-domain QoS-routing, a number of calculated examples confirmed its efficiency and effectiveness in terms of providing a normalized quality of service. It was experimentally established that the method converged to the optimal solution in a finite number of iterations. Reducing the number of such iterations helps to reduce the amount of service traffic transmitted across the network between routers and SDN controllers at different levels, as well as minimizing the total time for solving the inter-domain QoS-routing.References
Wibowo F.X.A. et al. Multi-domain software defined networking: research status and challenges. Journal of Network and Computer Applications, 2017, Vol. 87. P. 32-45.
Katsalis K. et al. Implementation experience in multi-domain SDN: Challenges, consolidation and future directions. Computer Networks, 2017, Vol. 129. Р. 142-158.
Blial O., Mamoun M. Ben, Benaini R. An Overview on SDN Architectures with Multiple Controllers. Journal of Computer Networks and Communications. 2016. Vol. 2, P. 1-8. DOI: 10.1155/2016/9396525.
Medhi D., Ramasamy K. Network Routing, Second Edition: Algorithms, Protocols, and Architectures (The Morgan Kaufmann Series in Networking) 2nd Edition. Cambridge, MA, USA: Elsevier Inc., 2018. 1018 p.
Misra S., Goswami S. Network Routing: Fundamentals, Applications, and Emerging Technologies 1st Edition. Wiley, 2017. 536 p.
Uyless D. Black. IP routing protocols: RIP, OSPF, BGP, PNNI and Cisco routing protocols. Prentice Hall PTR, 2000. 287 р.
Szigeti T., Zacks D., Falkner M., Arena S. Cisco Digital Network Architecture: Intent-based Networking for the Enterprise. Cisco Press, 2018. 800 p.
Wójcik R., Domżał J., Duliński Z. A survey on methods to provide interdomain multipath transmissions. Computer Networks. 2016. Vol. 108. P. 233-259.
Wright B. Inter-area routing, path selection and traffic engineering. Enfield: data Connection Limited. 2003. 42 p.
Eun J.S., Jung H. The implementation of domain routing protocol in hierarchical domain network model // 2015 17th Asia-Pacific Network Operations and Management Symposium (APNOMS) (Busan, South Korea, 19-21 Aug. 2015). Busan, 2015. P. 396-399.
Lemeshko, O., Nevzorova O., Hailan A.M. Hierarchical Method of Routing and Resource Allocation in DiffServ-TE Network. Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET’2018): 14th International Conference (Lviv-Slavske, Ukraine, 20-24 Feb. 2018). Lviv, 2018. P. 1-5.
Лемешко А.В., Хайлан А.М. Многоуровневое управление трафиком в сети MPLS–TE DiffServ на основе координационного принципа прогнозирования взаимодействий. Проблеми телекомунікацій. 2010. № 1 (1). С. 35–44. URL: http://pt.nure.ua/wp-content/uploads/2020 /01/101_lemeshko_traffic.pdf.
Lemeshko O., Yeremenko O., Nevzorova O. Hierarchical Method of Inter-Area Fast Rerouting. Transport and Telecommunication Journal. 2017 18(2). P. 155-167.
Nevzorova Ye.S., Arous K.M., Salakh M.T.R. Method for hierarchical coordinated multicast routing in a telecommunication network. Telecommunication and Radio Engineering. 2016. Vol. 75. P. 1137- 1151.
Лемешко А.В., Невзорова Е.С., Ильяшенко А.Е. Разработка и анализ метода иерархическо-координационной междоменной маршрутизации в телекоммуникационной сети. Наукові записки Українського науково-дослідного інституту зв’язку. 2016. №4 (44). С. 49- 67.
White R., Tantsura J. E. Navigating Network Complexity: Next-generation routing with SDN, service virtualization, and service chaining. AddisonWesley Professional, 2015. 320 p.
Lin S.C., Akyildiz I.F., Wang P., Luo M. QoS-aware Adaptive Routing in Multi-Layer Hierarchical Software Defined Networks: A Reinforcement Learning Approach. 2016 IEEE International Conf. on Services Computing (San Francisco, CA, USA, 27 June-2 July 2016). San Francisco, 2016. P. 25-33.
Amin R., Reisslein M., Shah N. Hybrid SDN Networks: A Survey of Existing Approaches. IEEE Communications Surveys & Tutorials. 2018. 48 p. DOI: 10.1109/COMST.2018.2837161.
Месарович М., Мако Д., Такахара И. Теория иерархических многоуровневых систем. М.: Мир, 1973. 344 с.
Сингх М., Титли А. Системы: декомпозиция, оптимизация и управление. М.: Машиностроение, 1986. 494 с.
Поповский В.В., Лемешко А.В., Евсеева О.Ю. Динамическое управление ресурсами ТКС: математические модели в пространстве состояний. Наукові записки УНДІЗ. 2009. №1(9). С. 3-26.
Поповский В. В., Лемешко А.В., Евсеева О.Ю. Математические модели телекоммуникационных систем. Часть 1. Математические модели функциональных свойств телекоммуникационных систем. Проблеми телекомунікацій. 2011.№ 2(4).С. 3.-41. Режим доступу: http://pt.nure.ua/wp-content/uploads/2020/01/ 112_popovsky_functional.pdf.
Лемешко О.В., Євсеєва О.Ю., Симоненко Д.В. Модель динамічного балансування мережних ресурсів у телекомунікаційній мережі. Системи обробки інформації. 2008. Вип. 5(72). С.71-74.
Segall A. The modeling of adaptive routing in data communications networks. IEEE Trans. on communications. 1975. Vol. 25, № 1. P.85 – 95.
Yeremenko O., Lemeshko O. QoS Ensuring over Probability of Timely Delivery in Multipath Routing. In: Hu Z., Petoukhov S., Dychka I., He M. (eds) Advances in Computer Science for Engineering and Education. ICCSEEA 2018. Advances in Intelligent Systems and Computing, Springer, Cham. 2018. Vol. 754. P. 244-254. DOI: https://doi.org/10.1007/978-3-319-91008-6_25
Lemeshko O.V. Policy-based QoS management model for multiservice networks / O.V. Lemeshko, S.V. Garkusha, O.S. Yeremenko , A.M. Hailan. International Siberian Conference on Control and Communications (SIBCON), 21-23 May 2015, Omsk, Russia. Publisher: IEEE. P. 1-4.
Lemeshko A.V., Evseeva O.Yu., Garkusha S.V. Research on Tensor Model of Multipath Routing in Telecommunication Network with Support of Service Quality by Greate Number of Indices. Telecommunications and RadioEngineering, 2014, Vol.73, No 15. P. 1339-1360.
Lemeshko O., Yeremenko O. Dynamic Presentation of tensor model for multipath QoS-routing. Modern Problems of Radio Engineering, Telecommunications and Computer Science. Proceedings of the international Conference TCSET’2016. – Lviv-Slavske, Ukraine, February 23 - 26, 2016: Publishing House of Lviv Polytechnic, 2016. P. 601-604.
Лемешко А.В. Тензорная модель многопутевой маршрутизации агрегированных потоков с резервированием сетевых ресурсов, представленная в пространстве с кривизной // Праці УНДІРТ. Випуск №4 (40). – Одеса: Видання УНДІРТ, 2004. – С. 12-18.
Lemeshko O., Yevdokymenko M., Naors Y. Anad Alsaleem. Development of the tensor model of multipath QoE-routing in an infocommunication network with providing the required Quality Rating // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 5, Issue 2 (95). P. 40–46. DOI: https://doi.org/10.15587/1729-4061.2018.141989.
Yevdokymenko M. Routing Tensor Model with Providing Multimedia Quality. Problems of Infocommunications. Science and Technology” (PICS&T-2019): International Scientific-Practical Conference–Kyiv, 2019. P. 819 - 824.
Лемешко А.В., Евсеева О.Ю. Тензорная геометризация структурно-функционального представления телекоммуникационной системы в базисе межполюсных путей и внутренних разрезов. Наукові записки УНДІЗ. 2010. Вип. 1, № 13. С. 14–26.
Lemeshko O.V., Yeremenko O. S., Hailan A. M. QoS solution of traffic management based on the dynamic tensor model in the coordinate system of interpolar paths and internal node pairs. Radio Electronics & Info Communications (UkrMiCo): Proceedings of the International Conference, Kiev, Ukraine, 11-16 Sept. 2016. IEEE, 2016. P. 1–6. DOI: 10.1109/UkrMiCo.2016.7739625.
Yeremenko O. Development of the dynamic tensor model for traffic management in a telecommunication network with the support of different classes of service. Eastern-European Journal of Enterprise Technologies. 2016. Vol. 6, Issue 9 (84). P. 12–19. DOI: 10.15587/1729-4061.2016.85602.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Maryna Yevdokymenko
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).