Analysis of the rotative potential of two-frequency oscillation of water molecule

Authors

DOI:

https://doi.org/10.15587/2313-8416.2019.170742

Keywords:

water molecule, two-frequency pendulum, inhomogeneous field of forces, toroidal potential

Abstract

The rotational oscillations of a water molecule are considered using the model of a two-frequency physical pendulum and it is shown that the type of its potential is correctly described as toroidal. It is shown that the ellipticity of the toroidal potential in a non-uniform force field decreases with an increase in the exponent n than for an ellipsoidal one, however, both potentials become close. A decrease in the ellipticity of the toroidal potential in this field can lead to the expansion of the region of existence of elliptical-like oscillations of the two-frequency pendulum towards its lower speeds

Author Biography

Nikolay Malafayev, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of Physico-Mathematical and Engineering and Technical Disciplines

References

Antonchenko, V. Ia., Davydov, A. S., Ilin, V. V. (1991). Osnovy fiziki vody. Kyiv: Naukova Dumka, 672.

Eizenberg, D., Kautsman, V. (1975). Struktura i svoistva vody. Leningrad: Gidrometeoizdat, 280.

Bersuker, I. B. (1987). Effekt Iana – Tellera i vibronnye vzaimodeistviia v sovremennoi khimii. Moscow: Nauka, 344.

Malafaev, N. T. (2011). About interactions and dynamics of molecules in pure water. Eastern-European Journal of Enterprise Technologies, 52 (4 (8)), 48–58. Available at: http://journals.uran.ua/eejet/article/view/1465/1363

Malafayev, N. T., Pogozhikh, N. I. (2015). Features rotational of vibrations of water molecules. Eastern-European Journal of Enterprise Technologies, 2 (5 (74)), 27–35. doi: http://doi.org/10.15587/1729-4061.2015.40569

Malenkov, G. G. (2006). Structure and dynamics of liquid water. Journal of Structural Chemistry, 47 (1), 5–35. doi: http://doi.org/10.1007/s10947-006-0375-8

Zel’dovich, B. Y., Soileau, M. J. (2004). Bi-frequency pendulum on a rotary platform: modeling various optical phenomena. Uspekhi Fizicheskih Nauk, 174 (12), 1337–1354. doi: http://doi.org/10.3367/ufnr.0174.200412e.1337

Kondratev, B. P., Dubrovskii, A. S., Trubitsyna, N. G., Mukhametshina, E. Sh. (2008). Prostranstvennii potentsial odnorodnogo krugovogo tora cherez ekvigravitiruiushchie element. Zhurnal tekhnicheskoi fiziki, 78 (7), 132–135.

Higgs, J. M., Petersen, B. V., Lammert, S. A., Warnick, K. F., Austin, D. E. (2016). Radiofrequency trapping of ions in a pure toroidal potential distribution. International Journal of Mass Spectrometry, 395, 20–26. doi: http://doi.org/10.1016/j.ijms.2015.11.009

Wu, S.-T., Chen, Y.-R., Wang, S.-S. (2011). Two-degree-of-freedom rotational-pendulum vibration absorbers. Journal of Sound and Vibration, 330 (6), 1052–1064. doi: http://doi.org/10.1016/j.jsv.2010.09.028

Malafaev, N. Т. (2016). Rotational oscillations of water molecules as oscillations of a spherical pendulum in an inhomogeneous field of forces. ScienceRise, 2 (2 (19)), 62–69. doi: http://doi.org/10.15587/2313-8416.2016.60587

Water Models. Available at: http://www.lsbu.ac.uk/water/models.html

Makhlaichuk, P. V., Malomuzh, M. P., Zhyganiuk, I. V. (2013). Dimerization of water molecules modeling of the attractive part of the interparticle potential in the multipole approximation. Ukrainian Journal of Physics, 58 (3), 278–288. doi: http://doi.org/10.15407/ujpe58.03.0278

Published

2019-07-16

Issue

Section

Physics and mathematics