Development of cooling systems using the night-radiation effect

Authors

DOI:

https://doi.org/10.15587/2313-8416.2019.189492

Keywords:

milk cooling, night radiation effect, cooling, vapor compression and absorption water-ammonia refrigeration machines, solar collector

Abstract

The analysis of the possibilities to use the effect of night radiation (ENR) for additional heat removal from the elements of the cooling system is carried out. The energy prospects of ENR technology for autonomous cooling systems are shown mainly in rural and peasant farms remote from electric energy sources. To increase the energy efficiency of autonomous cooling systems, it is proposed to use absorption water-ammonia refrigeration machines (WARM) and vapor compression refrigeration machines. It is proposed to use the thermal energy of solar radiation for the WARM operation.

Author Biographies

Alexander Titlov, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Doctor of Technical Sciences, Professor, Head of Department

Department of Heat-and-Power Engineering and Oil-and-Gas Transportation and Storing

Alexander Tsoy, Almaty Technological University Tole bi str., 100, Almaty, Republic of Kazakhstan, 750012

PhD, Associate Professor

Department of Mechanization and Automation of Production Processes

Assel Alimkeshova, Almaty Technological University Tole bi str., 100, Almaty, Republic of Kazakhstan, 750012

Postgraduate Student

Department of Mechanization and Automation of Production Processes

Rita Jamasheva, Almaty Technological University Tole bi str., 100, Almaty, Republic of Kazakhstan, 750012

Postgraduate Student

Department of Mechanization and Automation of Production Processes

References

Bosin, I. N. (1993). Okhlazhdenie moloka na kompleksakh i fermakh. Moscow: Kolos, 46.

Perelshtein, B. Kh. (2008). Novye energeticheskie sistemy. Kazan: Izd-vo Kazan. gos. tekhn. un-ta, 244.

Moroziuk, L. I. (2014). Teploispolzuiuschie kholodilnye mashiny – puti razvitiia i sovershenstvovaniia. Refrigeration Engineering and Technology, 5 (151), 23–29. doi: http://doi.org/10.15673/0453-8307.5/2014.28695

Moroziuk, L. I. (2013). Razvitie teorii i metodov issledovaniia processov preobrazovaniia i polucheniia tepla i kholoda v ustanovkakh s mnogokomponentnymi i mnogofaznymi rabochimi veschestvami. Odessa, 352.

Kimball, B. A. (1985). Cooling performance and efficiency of night sky radiators. Solar Energy, 34 (1), 19–33. doi: http://doi.org/10.1016/0038-092x(85)90089-1

Coi, A. P., Granovskii, A. S., Coi, D. A., Baranenko, A. V. (2015). Vliianie klimata na rabotu kholodilnoi sistemy, ispolzuiuschei effektivnoe izluchenie v kosmicheskoe prostranstvo. Kholodilnaia tekhnika, 1, 43–47.

Yong, C., Yiping, W., Li, Z. (2015). Performance analysis on a building-integrated solar heating and cooling panel. Renewable Energy, 74, 627–632. doi: http://doi.org/10.1016/j.renene.2014.08.076

Zhou, Z., Sun, X., Bermel, P. (2016). Radiative cooling for thermophotovoltaic systems. Infrared Remote Sensing and Instrumentation XXIV. San Diego. doi: http://doi.org/10.1117/12.2236174

Bourdakis, E., Kazanci, O. B., Olesen, B.W., Grossule, F. (2016). Simulation Study of Discharging PCM Ceiling Panels through Night – time Radiative Cooling. ASHRAE Annual Conference. St. Louis. Available at: https://www.researchgate.net/publication/295778060_Simulation_Study_of_Discharging_PCM_Ceiling_Panels_through_Night-time_Radiative_Cooling

Imroz Sohel, M., Ma, Zh., Cooper P., Adams J., Niccol L., Gschwander S. (2014). A Feasibility Study of Night Radiative Cooling of BIPVT in Climatic Conditions of Major Australian Cities. Asia – Pacific solar research conference.

Prommajak, T., Phonruksa, J., Pramuang, S. (2008). Passive cooling of air at night by the nocturnal radiation in Loei, Thailand. International Journal of Renewable Energy Research, 3 (1), 33–40.

Coi, A. P., Baranenko, A. V., Eglit, A. Ia. (2012). Ispolzovanie effektivnogo izlucheniia v kholodilnoi sisteme otkrytogo katka. Vestnik Mezhdunarodnoi Akademii Kholoda, 4, 8–11.

Bosholm, F., López-Navarro, A., Gamarra, M., Corberán, J. M., Payá, J. (2016). Reproducibility of solidification and melting processes in a latent heat thermal storage tank. International Journal of Refrigeration, 62, 85–96. doi: http://doi.org/10.1016/j.ijrefrig.2015.10.016

Sutyaginsky, M. A., Maksimenko, V. A., Potapov, Y. A., Suvorov, A. P., Dubok, V. N. (2016). The Use of Low-temperature Potential of the Environment in Energy-efficient Refrigeration Supply Technologies of the Enterprises of GC “Titan.” Procedia Engineering, 152, 361–365. doi: http://doi.org/10.1016/j.proeng.2016.07.715

Berdahl, P., Martin, M., Sakkal, F. (1983). Thermal performance of radiative cooling panels. International Journal of Heat and Mass Transfer, 26 (6), 871–880. doi: http://doi.org/10.1016/s0017-9310(83)80111-2

Coi, A. P., Granovskii, A. S., Coi, D. A., Baranenko, A. V. (2014). Vliianie klimata na rabotu kholodilnoi sistemy, ispolzuiuschei effektivnoe izluchenie v kosmicheskoe prostranstvo. Kholodilnaia tekhnika, 12, 36–41.

Ischenko, I. N., Titlov, A. S., Krasnopolskii, A. N. (2011). Perspektivy primeneniia absorbcionnykh vodoammiachnykh kholodilnykh mashin v sistemakh polucheniia vody iz atmosfernogo vozdukha. Zbіrnik naukovikh prac Vіnnickogo nacіonalnogo agrarnogo unіversitetu. Serіia: Tekhnіchnі nauki, 7, 92–97.

Chen, G., Doroshenko, A., Koltun, P., Shestopalov, K. (2015). Comparative field experimental investigations of different flat plate solar collectors. Solar Energy, 115, 577–588. doi: http://doi.org/10.1016/j.solener.2015.03.021

Osadchuk, E. A., Titlov, A. S., Mazurenko, S. Iu. (2014). Opredelenie energeticheski effektivnykh rezhimov raboty absorbcionnoi vodoammiachnoi kholodilnoi mashiny v sistemakh polucheniia vody iz atmosfernogo vozdukha. Kholodilna tekhnіka ta tekhnologіia, 4, 54–57. doi: http://doi.org/10.15673/0453-8307.4/2014.28054

Ischenko, I. N. (2010). Modelirovanie ciklov nasosnykh i beznasosnykh absorbcionnykh kholodilnykh agregatov. Naukovі pracі ONAKHT, 2 (38), 393–405.

Coi, A. P., Granovskii, A. S., Machuev, Iu. I., Filatov, A. S. (2015). Obzor provedennykh eksperimentalnykh issledovanii effektivnogo izlucheniia kholodilnoi sistemy v kosmicheskoe prostranstvo. Vestnik MAKH, 3, 28–33.

Martynovskii, V. S., Melcer, L. Z., Minkus, B. A. (1982). Kholodilnye mashiny. Moscow: Legkaia i pischevaia prom-t, 223.

Hrnjak, P. (2017). Efficient very low charged ammonia systems. Ammonia and CO2 Refrigeration Technologies. Ohrid.

Published

2019-12-28

Issue

Section

Technical Sciences