Розробка систем охолодження з використанням ефекту нічного випромінювання
DOI:
https://doi.org/10.15587/2313-8416.2019.189492Słowa kluczowe:
охлаждение молока, эффект ночного излучения, охлаждение, парокомпрессионная и абсорбционная водоаммиачная холодильные машины, солнечный коллекторAbstrakt
Выполнен анализ возможностей использовать эффекта ночного излучение (ЭНИ) для дополнительного отвода тепла от элементов системы охлаждения. Показаны энергетические перспективы технологии ЭНИ для автономных систем охлаждения преимущественно в сельских и крестьянских хозяйствах, удаленных от источников электрической энергии. Для повышения энергетической эффективности автономных систем охлаждения предложено использовать абсорбционные водоаммиачные холодильные машины (АВХМ) и парокомпрессионные холодильные машины. Для работы АВХМ предлагается использовать тепловую энергию солнечного излучения
Bibliografia
Bosin, I. N. (1993). Okhlazhdenie moloka na kompleksakh i fermakh. Moscow: Kolos, 46.
Perelshtein, B. Kh. (2008). Novye energeticheskie sistemy. Kazan: Izd-vo Kazan. gos. tekhn. un-ta, 244.
Moroziuk, L. I. (2014). Teploispolzuiuschie kholodilnye mashiny – puti razvitiia i sovershenstvovaniia. Refrigeration Engineering and Technology, 5 (151), 23–29. doi: http://doi.org/10.15673/0453-8307.5/2014.28695
Moroziuk, L. I. (2013). Razvitie teorii i metodov issledovaniia processov preobrazovaniia i polucheniia tepla i kholoda v ustanovkakh s mnogokomponentnymi i mnogofaznymi rabochimi veschestvami. Odessa, 352.
Kimball, B. A. (1985). Cooling performance and efficiency of night sky radiators. Solar Energy, 34 (1), 19–33. doi: http://doi.org/10.1016/0038-092x(85)90089-1
Coi, A. P., Granovskii, A. S., Coi, D. A., Baranenko, A. V. (2015). Vliianie klimata na rabotu kholodilnoi sistemy, ispolzuiuschei effektivnoe izluchenie v kosmicheskoe prostranstvo. Kholodilnaia tekhnika, 1, 43–47.
Yong, C., Yiping, W., Li, Z. (2015). Performance analysis on a building-integrated solar heating and cooling panel. Renewable Energy, 74, 627–632. doi: http://doi.org/10.1016/j.renene.2014.08.076
Zhou, Z., Sun, X., Bermel, P. (2016). Radiative cooling for thermophotovoltaic systems. Infrared Remote Sensing and Instrumentation XXIV. San Diego. doi: http://doi.org/10.1117/12.2236174
Bourdakis, E., Kazanci, O. B., Olesen, B.W., Grossule, F. (2016). Simulation Study of Discharging PCM Ceiling Panels through Night – time Radiative Cooling. ASHRAE Annual Conference. St. Louis. Available at: https://www.researchgate.net/publication/295778060_Simulation_Study_of_Discharging_PCM_Ceiling_Panels_through_Night-time_Radiative_Cooling
Imroz Sohel, M., Ma, Zh., Cooper P., Adams J., Niccol L., Gschwander S. (2014). A Feasibility Study of Night Radiative Cooling of BIPVT in Climatic Conditions of Major Australian Cities. Asia – Pacific solar research conference.
Prommajak, T., Phonruksa, J., Pramuang, S. (2008). Passive cooling of air at night by the nocturnal radiation in Loei, Thailand. International Journal of Renewable Energy Research, 3 (1), 33–40.
Coi, A. P., Baranenko, A. V., Eglit, A. Ia. (2012). Ispolzovanie effektivnogo izlucheniia v kholodilnoi sisteme otkrytogo katka. Vestnik Mezhdunarodnoi Akademii Kholoda, 4, 8–11.
Bosholm, F., López-Navarro, A., Gamarra, M., Corberán, J. M., Payá, J. (2016). Reproducibility of solidification and melting processes in a latent heat thermal storage tank. International Journal of Refrigeration, 62, 85–96. doi: http://doi.org/10.1016/j.ijrefrig.2015.10.016
Sutyaginsky, M. A., Maksimenko, V. A., Potapov, Y. A., Suvorov, A. P., Dubok, V. N. (2016). The Use of Low-temperature Potential of the Environment in Energy-efficient Refrigeration Supply Technologies of the Enterprises of GC “Titan.” Procedia Engineering, 152, 361–365. doi: http://doi.org/10.1016/j.proeng.2016.07.715
Berdahl, P., Martin, M., Sakkal, F. (1983). Thermal performance of radiative cooling panels. International Journal of Heat and Mass Transfer, 26 (6), 871–880. doi: http://doi.org/10.1016/s0017-9310(83)80111-2
Coi, A. P., Granovskii, A. S., Coi, D. A., Baranenko, A. V. (2014). Vliianie klimata na rabotu kholodilnoi sistemy, ispolzuiuschei effektivnoe izluchenie v kosmicheskoe prostranstvo. Kholodilnaia tekhnika, 12, 36–41.
Ischenko, I. N., Titlov, A. S., Krasnopolskii, A. N. (2011). Perspektivy primeneniia absorbcionnykh vodoammiachnykh kholodilnykh mashin v sistemakh polucheniia vody iz atmosfernogo vozdukha. Zbіrnik naukovikh prac Vіnnickogo nacіonalnogo agrarnogo unіversitetu. Serіia: Tekhnіchnі nauki, 7, 92–97.
Chen, G., Doroshenko, A., Koltun, P., Shestopalov, K. (2015). Comparative field experimental investigations of different flat plate solar collectors. Solar Energy, 115, 577–588. doi: http://doi.org/10.1016/j.solener.2015.03.021
Osadchuk, E. A., Titlov, A. S., Mazurenko, S. Iu. (2014). Opredelenie energeticheski effektivnykh rezhimov raboty absorbcionnoi vodoammiachnoi kholodilnoi mashiny v sistemakh polucheniia vody iz atmosfernogo vozdukha. Kholodilna tekhnіka ta tekhnologіia, 4, 54–57. doi: http://doi.org/10.15673/0453-8307.4/2014.28054
Ischenko, I. N. (2010). Modelirovanie ciklov nasosnykh i beznasosnykh absorbcionnykh kholodilnykh agregatov. Naukovі pracі ONAKHT, 2 (38), 393–405.
Coi, A. P., Granovskii, A. S., Machuev, Iu. I., Filatov, A. S. (2015). Obzor provedennykh eksperimentalnykh issledovanii effektivnogo izlucheniia kholodilnoi sistemy v kosmicheskoe prostranstvo. Vestnik MAKH, 3, 28–33.
Martynovskii, V. S., Melcer, L. Z., Minkus, B. A. (1982). Kholodilnye mashiny. Moscow: Legkaia i pischevaia prom-t, 223.
Hrnjak, P. (2017). Efficient very low charged ammonia systems. Ammonia and CO2 Refrigeration Technologies. Ohrid.
##submission.downloads##
Opublikowane
Numer
Dział
Licencja
Copyright (c) 2019 Alexander Titlov, Alexander Tsoy, Assel Alimkeshova, Rita Jamasheva
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.