Energy-efficient control mode of operation of domestic absorption refrigerating device

Authors

DOI:

https://doi.org/10.15587/2313-8416.2019.189497

Keywords:

absorption refrigeration device, reflux condenser, energy saving, control modes

Abstract

The current environmental situation is forcing developers of household refrigeration equipment to reconsider their attitude to absorption refrigeration device (ARD), which can be considered as one of the alternative options for switching to environmentally friendly refrigerants. At the same time, ARDs have increased energy consumption in comparison with similar compression models. It is shown that the main element ensuring the effective ARD operation is a reflux condenser. Modeling has shown that to ensure complete purification of the ammonia vapor stream under severe conditions of ARD operation, the thickness of the thermal insulation of the reflux condenser lifting section in the form of fiberglass fabric should be 3...4 mm thick

Author Biographies

Alexander Titlov, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Doctor of Technical Sciences, Professor, Head of Department

Department of Heat-and-Power Engineering and Oil-and-Gas Transportation and Storing

Andrey Kholodkov, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Postgraduate Student

Department of Heat-and-Power Engineering and Fuel Pipeline Transportation

References

Bolin, B., Dees, B. R., Iager, Dzh. (1989). Parnikovii effekt, izmenenie klimata i ekosistemy. Leningrad: Gidrometeoizdat, 557.

Prylady kholodylni pobutovi. Ekspluatatsiini kharakterystyky ta metody vyprobuvan (1996). DSTU 3023-95 (HOST 30204-95, ISO 5155-83, ISO 7371-85, ISO 8187-91). Kyiv: Derzhstandart Ukrainy.

Perspectives in refrigerant development (1993). Bitzer Kuhlmachinenban. No. 9306E, 23.

Uzhanskii, V. S. (1982). Avtomatizaciia kholodilnykh mashin i ustanovok. Moscow: Legkaia i pischevaia promyshlennost, 304.

Laguerre, O., Derens, E., Palagos, B. (2002). Study of domestic refrigerator temperature and analysis of factors affecting temperature: a French survey. International Journal of Refrigeration, 25 (5), 653–659. doi: http://doi.org/10.1016/s0140-7007(01)00047-0

Vasyliv, O. B., Titlov, A.S. (1999). Poisk energosberegaiuschikh rezhimov raboty seriinykh absorbcionnykh kholodilnykh apparatov. Kholodilnaia tekhnika i tekhnologiia, 60, 28–37.

Vasyliv, O. B. (1998). Optymizatsiia rezhymiv roboty pobutovykh absorbtsiinykh kholodylnykh aparativ riznoho funktsionalnoho pryznachennia. Naukovi pratsi Odes. derzh. akad. kharch. tekhnolohii, 18, 174–179.

Kuo, B. (1986). Teoriia i proektirovanie cifrovykh sistem upravleniia. Moscow: Mashinostroenie, 488.

Open the door (1999). Reklamnye materialy firmy «Electrolux» na mezhdunarodnoi vystavke «Domotekhnika». Keln.

Prylady kholodylni elektrychni pobutovi. Zahalni tekhnichni umovy (1996). DSTU 2295-93 (HOST 16317-95 ISO 5155-83, ISO 7371-85, IEC 335-2-24-84). Kyiv: Derzhstandart Ukrainy.

Iarovoi, S. V., Pilipenko, A. M. (1989). Vliianie rabochego davleniia v kholodilnom agregate bytovogo absorbcionnogo kholodilnika na ego nadezhnost. Kholodilnaia tekhnika, 12, 19–20.

Rid, R., Prausnic, Dzh., Shervud, T. (1982). Svoistva gazov i zhidkostei. Leningrad: Khimiia, 592.

Pilipenko, A. M., Zirka, L. P., Ivanov, A. A. (1983). Sravnitelnii analiz razlichnykh rezhimov raboty PGK ADKHM. Sb. tr. VNIEKIMEMP "Issledovanie i razrabotka novogo pokoleniia mashin i priborov dlia byta". Moscow, 33–42.

Bykov, A. V. (1979). Primeneniia kholoda v pischevoi promyshlennosti. Moscow: Pischevaia promyshlennost, 271.

Kholodilnoe konservirovanie (1982). Rukovodstvo RK 7524912-16-91. Smolensk: IPP "Kostroma".

Babakin, B. S., Vygodin, V. A. (2005). Bytovye kholodilniki i morozilniki. Riazan: Uzoreche, 860.

Kholodkov, A. O., Titlov, A. S. (2017). Rezultaty eksperimentalnykh issledovanii generatornykh uzlov absorbcionnykh kholodilnykh priborov, rabotaiuschikh v shirokom diapazone temperatur okruzhaiuschei sredy. Refrigeration Engineering and Technology, 53 (5), 4–13. doi: http://doi.org/10.15673/ret.v53i5.847

Liu, D.-Y., Chang, W.-R., Lin, J.-Y. (2004). Performance comparison with effect of door opening on variable and fixed frequency refrigerators/freezers. Applied Thermal Engineering, 24 (14-15), 2281–2292. doi: http://doi.org/10.1016/j.applthermaleng.2004.01.009

Likhareva, A. V. (1957). Issledovanie absorbcionno-diffuzionnogo kholodilnogo apparata. Kholodilnaia tekhnika, 2, 23–29.

Terekhov, A. A. (1973). Remont kholodilnikov absorbcionnogo tipa. Moscow: Legkaia industriia, 70.

A.S. 1747816 SSSR (1992). Sposob regulirovaniia proizvoditelnosti absorbcionno-diffuzionnogo kholodilnogo apparata i absorbcionno-diffuzionnii kholodilnii apparat. No. 4820950/06; declareted: 04.05.90; published: 15.07.92, Bul. No. 26.

Shelashova, S. L., Barykina, G. P. (1990). Effektivnye teploizoliacionnye konstrukcii v bytovoi kholodilnoi tekhnike. Kholodilnaia tekhnika, 5, 14–16.

Peklov, A. A., Stepanova, T. A. (1978). Kondicionirovanie vozdukha. Kyiv: Vischa shkola, 328.

Kholodkov, A. O., Titlov, A. S., Titlova, O. A. (2017). Modelirovanie teplovykh rezhimov deflegmatora bytovogo absorbcionnogo kholodilnogo agregata. Refrigeration Engineering and Technology, 53 (4), 4–11. doi: http://doi.org/10.15673/ret.v53i4.703

Kreit, F., Blek, U. (1983). Osnovy teploperedachi. Moscow: Mir, 512.

Vasyliv, O. B., Titlov, A. S., Kholodkov, A. O. (2017). Modelirovanie teplovykh rezhimov podemnogo uchastka deflegmatora bytovogo absorbcionnogo kholodilnogo agregata. Refrigeration Engineering and Technology, 53 (1), 20–26. doi: http://doi.org/10.15673/ret.v53i1.535

Kholodkov, A. O., Titlov, A. S. (2017). Rezultaty eksperimentalnykh issledovanii generatornykh uzlov absorbcionnykh kholodilnykh priborov, rabotaiuschikh v shirokom diapazone temperatur okruzhaiuschei sredy. Refrigeration Engineering and Technology, 53 (5), 4–13. doi: http://doi.org/10.15673/ret.v53i5.847

Published

2019-12-28

Issue

Section

Technical Sciences