Comparison of classifiers of vegetable objects that are built by means of neural networks and Fisher discriminant analysis

Authors

  • Євгеній Олександрович Шама Zaporizhzhya National Technical University, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2014.26402

Keywords:

recognition, spectral brightness coefficients, signs, classifier, neural network, perceptron

Abstract

The comparison methods of recognition of vegetable  objects is  given in the article on  results of remote sensing.  Linear discriminant analysis of Fisher and neural  networks methods has been used for  the construction  of identification mode. The construction of neural networks and classifier built by means of discriminant analysis were made on the basis of experimental data obtained in the field with the help of a spectrometer.  

Author Biography

Євгеній Олександрович Шама, Zaporizhzhya National Technical University

Post-graduate student

Department of radio engineering

References

Dubrovin, V. I., Morshchavka, S. V., Piza, D. М., Subbotin, S. А. (2000). Raspoznavanie rastenii po rezultatah distantsionnogho zondirovaniya na osnovr mnohgosloinyh neironnyh setei. Matematychni mashyny і systemy, 2–3, 113–119.

Morshchavka, S. V., Subbotin, S. A., Dubrovin, V. I., Piza, D. M. (2001). Neirosetevaya klassifikatsiya rasteniy pо rezultatam distantsionnohgo zondirovaniya. Radioelektronika i molod v XXI storichchi : 5-i Mizhnarodnyi molodizhnyi forum, 2, 324–325.

Dubrovin, V, Subbotin, S, Morshchavka, S, Piza, D. (2001). The plant recognition on remote sensing results by the feed-forward neural networks. Smart Engineering

System Design, 3, 251–256.

Sergienko, R. B. (2009). Issledovanie effektivnosti koevolyutsionnogo geneticheskogo algoritma uslovnoi optimizatsii. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M.F. Reshetneva, 3, 31–36.

Mayatskaya, I. А. (2003). О postroenii modeley rastitelynuh obektov Razrabotka tehnicheskogo osnashceniya proizvodstva produktsii zhivodnovodstva: Zernograd, VNIPTIMESH, 207–213.

Saimon, Haikin (2006). Neironnye seti: polnyi kurs, 2-е izdanie, Izdatelskiy dom "Vilyams", 1104.

Published

2014-08-13

Issue

Section

Technical Sciences