Configuration interaction in the second quantization representation: basics with applications up to full CI

Authors

  • Yuriy Kruglyak Odessa State Environmental University, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2014.28948

Keywords:

second quantization, configuration interaction, Wick theorems, quantum chemistry, full CI, benzyl radical, electron density, spin density

Abstract

Mathematical formalism of the second quantization is applied to the configuration interaction (CI) method in quantum chemistry. Application of the Wick’s theorems for calculation of the matrix elements over configurations leads to a simple logical scheme which is valid for configurations of an arbitrary complexity and can be easily programmed.

Author Biography

Yuriy Kruglyak, Odessa State Environmental University

Doctor of Chemical Sciences, Professor

Department of Information Technologies

References

Lowdin; P.-O. (1955). Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices; Natural Spin-Orbitals; and Convergence Problems in the Method of Configurational Interaction. Physical Review; 97 (6); 1474–1508. doi: 10.1103/physrev.97.1474

Daudel; R.; Lefebvre; R.; Moser; C. (1959). Quantum Chemistry. Methods and Applications. Interscience Publ.; New York; 572.

Salem; L.; Benjamin; W. A. (Ed.) (1966). The molecular orbital theory of conjugated systems. N.Y.; 576.

Koutecky; J.; Cizek; J.; Dobsky; J.; Hlavaty; K. (1964). The effect of the choice of parameters on the order of energy levels of benzene calculated in the π-electron approximation by the configuration interaction method including double- and triple-excited configurations. Theoretica Chimica Acta; 2 (5); 462–467. doi: 10.1007/bf00526596

Jorgensen; P.; Simons; J. (1981). Second quantization-based methods in quantum chemistry. Academic Press; N. Y.; 172.

Cizek; J. (1966). Elements matriciels de l’hamiltonien entre les etats monoexcites et biexcites singulets. Theoretica Chimica Acta; 6 (4); 292–298. doi: 10.1007/bf00537275

Wick; G. C. (1950). The evaluation of the collision matrix. Physical Review; 80 (2); 268–272. doi: 10.1103/physrev.80.268

Kruglyak; Yu. A.; Kuprievich; V. A.; Mozdor; E. V.; Brodsky; A. I. (Ed.). (1970). Computation of molecular wave functions in multiconfigurational approximation. Structure of molecules and quantum chemistry; Naukova Dumka; Kiev; Ukraine; 121–132 [in Russian].

Kruglyak; Yu. A.; Kayushin; L. P.; Lvov; K. M.; Pulatova M. K. (Ed.) (1970). Calculation of electronic structure of molecules and radicals by SCF and CI methods. Study of paramagnetic centers of irradiated proteins; Nauka; Moscow; 135–173 [in Russian].

Dirac; P. A. M. (1958). The principles of quantum mechanics. The Clarendon Press; London; 324.

Kirzhnitz; D. A. (1963). Field methods in the many-particle theory. Gosatomizdat; Moscow.

Mozdor; E. V.; Kruglyak; Yu. A.; Kuprievich; V. A. (1969). Matrix elements of the physical value operators on single-configurational functions for radicals. Teoreticheskaya i Eksperimentalnaya Khimiya; 5 (6); 723–730. [in Russian].

Longuet-Higgins; H. C.; Pople; J. A. (1955). The electronic spectra of aromatic molecules. IV. Excited States of Odd Alternant Hydrocarbon Radicals and Ions. Proceedings of Physical Society (London); 68 (7); 591–600. doi: 10.1088/0370-1298/68/7/307

Atherton; N. M.; Gerson; F.; Murrell; J. N. (1963). Electron spin distribution in the cycl (3;2;2) azine anion. Molecular Physics; 6 (3); 265–271. doi: 10.1080/00268976300100301

McWeeny; R. (1960). Some Recent Advances in Density Matrix Theory. Reviews of Modern Physics; 32 (3); 335–369. doi: 10.1103/revmodphys.32.335

Brillouin; L. (1933). La Méthode du Champ Self-Consistent; (Actualites Scientifiques et Industrielles; no. 71). Hermann; Paris; 46.

Brillouin; L. (1934). Les champs "self-consistents" de Hartree et de Fock; (Actualites Scientifiques et Industrielles; no. 159). Hermann; Paris. doi: 10.1051/jphysrad:0193400508041300

Dyadyusha; G. G.; Kuprievich; V. A. (1965). Theory of the self-consistent field for states with open shells. Teoreticheskaya i Eksperimentalnaya Khimiya; 1 (3); 262–263. doi: 10.1007/bf01134333

Roothaan; C. C. J. (1960). Self-consistent field theory for open shells of electronic systems. Reviews of Modern Physics; 32 (2); 179–185.

Kuprievich; V. A. (1967). SCF-CI and SCF open-shell studies of the base components of the nucleic acids. International Journal of Quantum Chemistry; 1 (5); 561–575. doi: 10.1002/qua.560010504

Danilov; V. I.; Kruglyak; Yu. A.; Pechenaya; V. I. (1969). Electron density – bond order matrix and spin density in multiconfigurational approximations. Teoreticheskaya i Eksperimentalnaya Khimiya; 5 (5); 669–673. [in Russian].

Kruglyak; Yu. A.; Mozdor; E. V.; Kuprievich; V. A. (1970). Full configuration interaction of the benzyl radical. Ukrainsky Fizichnyi Zhurnal; 15 (1); 47–57. [In Ukrainian].

Kruglyak; Yu. A.; Hibaum; G.; Radomyselskaya; N. E. (1972). Electronic structure of the ground state of the benzyl radical in equilibrium geometry. Revue Roumaine de Chimie; 17 (5); 781–799. [in Russian].

Gallup; G. A. (2003). Valence bond methods. Theory and applications. Cambridge University Press; Cambridge; Great Britain; 27.

Nesbet; R. K. (1965). Algorithm for diagonalization of large matrices. Journal of Chemical Physics; 43 (1); 311–312. doi: 10.1063/1.1696477

Kruglyak; Yu. A.; Dyadyusha; G. G.; Kuprievich; V. A. et al. (1969). Computational Methods for Electronic Structure and Spectra of Molecules. Naukova Dumka; Kiev; Ukraine; 307. [in Russian].

Egorova; L. I.; Mochalkin; V. N.; Rakauskas; R. I. et al. (1966). Calculation of the electronic structure of nonbenzoid conjugated molecules. Teoreticheskaya i Eksperimentalnaya Khimiya; 2 (3); 221–229. doi: 10.1007/bf00533788 10.1007/bf00533788

Kagan; G. I.; Fundiler; N.; Kagan; G. M. (1966). An algorithm for self-consistent field MO LCAO computations on conjugated systems with allowance for configuration interaction. Teoreticheskaya i Eksperimentalnaya Khimiya; 2 (5); 440–444. doi: 10.1007/bf01111983

Mochalkin; V. N. (1966). Calculation of the charge distribution and the spectrum of perylene. Teoreticheskaya i Eksperimentalnaya Khimiya; 2 (6); 531–534. doi: 10.1007/bf01000950

Imamura; A.; Fujita; H.; Nagata; C. (1967). Electronic structure of peptide and base components of nucleic acids in triplet state. Bulletin of Chemical Society of Japan; 40 (1); 21–27. doi: 10.1246/bcsj.40.21

Pukanic; G. W.; Forshey; D. R.; Wegener; B. J. D. et al. (1967). LCAO-MO-SCF-CI semi-empirical π-electron calculations on heteroaromatic systems. Theoretica Chimica Acta; 9 (1); 38–50. doi: 10.1007/bf00526107

Kouba; J.; Ohrn; Y. (1969). On the Projection of Many-Electron Spin Eigenstates. International Journal of Quantum Chemistry; 3 (4); 513–521. doi: 10.1002/qua.560030410

Kruglyak; Yu. A.; Mozdor; E. V. (1969). Study of the electronic structure of radicals by the CI method. 3. Excited states of the benzyl radical. Theoretica Chimica Acta; 15 (5); 374–384. doi: 10.1007/bf00528626

Kruglyak; Yu. A.; Pulatova; M. K.; Mozdor; E. V. et al. (1968). Study of electronic structure of γ-irradiated glycine and tyrosine radicals and their photoinduced reactions. Biofizika; 13 (3); 401–411. [in Russian].

Downloads

Published

2014-11-24

Issue

Section

Physics and mathematics