The generalized Hartree-Fock method and its versions: from atoms and molecules to polymers

Authors

  • Юрий Алексеевич Кругляк Odessa State Environmental University, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2014.30726

Keywords:

quantum chemistry, atomic physics, physics of molecules, computational chemistry, Hartree-Fock, polyenes, polyacetelenes, graphite, cumulenes

Abstract

There are considered the different versions of the generalized Hartree-Fock method: extended methods G1–GF, unrestricted HF method with and without projection on pure spin state, alternant MO methods (single- and multiparametrical), spin-optimized GI method. There are also discussed the properties of solutions of these methods and their applications to electronic shell calculations of atoms, molecules, and carbopolymers (polyenes, polyacetelenes, graphite, cumulenes).

Author Biography

Юрий Алексеевич Кругляк, Odessa State Environmental University

Doctor of Chemical Sciences, Professor

Department of Information Technologies

References

Hartree, D. R. (1928). The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24 (1), 89–110,. doi: 10.1017/s0305004100011919

Hartree, D. R. (1928). The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion. Mathematical Proceedings of the Cambridge Philosophical Society, 24, (1), 111–132,. doi: 10.1017/s0305004100011920

Fock, V. A. (1930). An approximate method for solving the quantum many-body problem. Zeitschrift fur Physik, 61 (1-2), 126–148.

Rutherford, D. E. (1948). Substitutional Analysis. Edinburgh University Press, London.

Hammermesh, M. (1962), Group theory and its application to physical problems. Addison-Wesley, Reading, 509.

Kaplan, I. G. (1969). Symmetry of many-electron systems. Moscow: Nauka, 407. [in Russian]

Goddard III, W. A. (1967). Improved quantum theory of many-electron systems: I. Construction of eigenfunctions of which satisfy Pauli's principle. Physical Review, 157 (1), 73–80. doi: 10.1103/physrev.157.73

Goddard III, W. A. (1967). Improved quantum theory of many-electron systems: II. The basic method. Physical Review, 157 (1), 81–93. doi: 10.1103/physrev.157.81

Goddard III, W. A. (1968). Improved quantum theory of many-electron systems: III. The GF method. The Journal of Chemical Physics, 48 (1), 450–461. doi: 10.1063/1.1667943

Goddard III, W. A. (1968). Wavefunctions and correlation energies for two-, three-, and four-electron atoms. The Journal of Chemical Physics, 48 (3), 1008–1017,. doi: 10.1063/1.1668754

Goddard III, W. A. (1968). Improved quantum theory of many-electron systems: IV. Properties of GF wavefunctions. The Journal of Chemical Physics, 48 (12), 5337–5347,. doi: 10.1063/1.1668225

Ladner, R. C., Goddard III, W. A. (1969). Improved quantum theory of many-electron systems: V. The spin-coupling optimized GI method. The Journal of Chemical Physics, 51 (3), 1073–1087,. doi: 10.1063/1.1672106

Goddard III, W. A. (1970). The symmetric group and the spin generalized SCF method. International Journal of Quantum Chemistry, IIIs, 593–600.

Slater, J. C. (1929). The theory of complex spectra. Physical Review, 34, 1293–1323. doi: 10.1103/physrev.34.1293

Slater, J. C. (1930). Quantum theory of molecules and solids. Physical Review, 35 (2), 210–211.

Roothaan, C. C. J. (1951). New developments in molecular orbital theory. Review of Modern Physics, 23 (2), 69–89. doi: 10.1103/revmodphys.23.69

Amos, A. T., Hall, G. G. (1961). Single determinant wave functions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 263 (1315), 483–493. doi: 10.1098/rspa.1961.0175

Ukrainskii, I. I., Kruglyak, Yu. A., Preuss, H., Yanoshek, R. (1971). Projection of the wave function of the unlimited Hartree – Fock method on the doublet state in the case of benzyl radical. Theoretical and Experimental Chemistry, 8 (3), 242–249.

Amos, A. T.; Sinanoğlu, O. (Ed.) (1965). Some properties of π-ions and triplets. Modern quantum chemistry. Academic Press, New York, 157–170.

Ukrainsky, I. I., Kruglyak, Yu. A.; Filippov, G. F. (Ed.) (1974). Generalized Hartree – Fock method and its applications to calculation of the electronic shells of atoms, molecules, and polymers. Modern problems in optics and nuclear physics, Naukova Dumka, Kiev, 241–265. [in Russian]

Pople, J. A., Nesbet, R. K. (1954). Self-consistent orbitals for radicals. The Journal of Chemical Physics, 22 (3), 571–572,. doi: 10.1063/1.1740120

Lowdin, P.-O. (1955). Quantum theory of many-particle systems. III. Extension of the Hartree – Fock scheme to include degenerate systems and correlation effects. Physical Review, 97 (6), 1509–1520. doi: 10.1103/physrev.97.1509

Lowdin, P.-O.; Prigogine, I. (Ed.) (1959). Correlation problem in many-electron quantum mechanics. I. Review of different approaches and discussion of some current ideas. Advances in Chemical Physics, vol. 2, Interscience, New York, 207–322. doi: 10.1002/9780470143483.ch7

Lowdin, P.-O. (1964). Angular momentum wave functions constructed by projection operators. Review of Modern Physics, 36 (4), 966–976.

Sasaki, F., Ohno, K. (1963). Spin-component analysis of single-determinant wavefunctions. Journal of Mathematical Physics, 4 (9), 1140–1147. doi: 10.1063/1.1704044

Smith, V. H. (1964). Projection of exact spin eigenfunctions. Journal Chemical Physics, 41 (1), 277. doi: 10.1063/1.1725634

Sando, K. M., Harriman, J. E. (1967). Spin-projected and extended SCF calculations. The Journal of Chemical Physics, 47, 180. doi: 10.1063/1.1711843

Harris, F. (1966). On the calculation of spin densities. Molecular Physics, 11 (3), 243–256. doi: 10.1080/00268976600101081

Pauncz, R. (1967). Alternant Molecular Orbital Method. W. B. Saunders, London.

Lowdin, P.-O. (1962). Band theory, valence band and tight-binding calculations. Journal of Applied Physics, 33 (1), 251–280. doi: 10.1063/1.1777106

Pauncz, R., de Heer, J., Lowdin, P.-O. (1962). Studies of the alternant molecular orbital method. I. General energy expression for an alternant system with closed-shell structure. Journal Chemical Physics, 36 (9), 2247–2256,. doi: 10.1063/1.1732872

Pauncz, R., de Heer, J., Lowdin, P.-O. (1962). Studies of the alternant molecular orbital method. II. Application to Cyclic Systems. Journal Chemical Physics, 36 (9), 2257–2265. doi: 10.1063/1.1732873

Hückel, E. (1930). Zur Quantentheorie der Doppelbindung. Zeitschrift für Physik, 60 (7-8), 423–456. doi: 10.1007/bf01341254

Hückel, E. (1931). Quantentheoretische Beiträge zum Benzolproblem. Zeitschrift für Physik, 70 (3-4), 204–286. doi: 10.1007/bf01339530

Kruglyak, Yu. A. et. al (1967). Methods of computations in quantum chemistry. Calculation of π-electronic molecular structure by simple molecular orbital methods, Naukova Dumka, Kiev, 161.

Coulson, C. A., Longuet-H, H. C. (1947). The electronic structure of conjugated systems. I. General theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 191 (1024), 39–60. doi: 10.1098/rspa.1947.0102

Brickstock, A., Pople, J. A. (1954). Resonance energies and charge distributions of unsaturated hydrocarbon radicals and ions. Transaction of the Faraday Society, 50, 901–911. doi: 10.1039/tf9545000901

Koopmans, T. A. (1933). Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica, 1 (1-6), 104–11,. doi: 10.1016/s0031-8914(34)90011-2

Brillouin, L. (1933). La méthode du champ self-consistent, (Actualites Scientifiques et Industrielles, no. 71), Hermann, Paris.

Brillouin, L. (1934). Les champs "self-consistents" de Hartree et de Fock, (Actualites Scientifiques et Industrielles, no. 159), Hermann, Paris, 47

Mozdor, E. V., Kruglyak, Yu. A., Kuprievich, V. A. (1968). Matrix elements of the physical value operators on single-configurational functions for radicals. Theoretical and Experimental Chemistry, 5 (6), 509–514.

Kruglyak, Yu. A., Mozdor, E. V., Kuprievich, V. A. (1971). Study of the electronic structure of radicals by the CI method. I. Matrix elements of the physical value operators. Croatica Chemica Acta, 43, 15–22.

Popov, N. A. (1970). Symmetry properties of one-electron orbitals in the method of different orbitals for different spins. Journal of Structural Chemistry, 11 (4), 670–676. doi: 10.1007/bf00743441

Hylleraas, E. A. Neue berechnung der energie des Heliums im grundzustande, sowie des tiefsten terms von ortho-helium. Zeitschrift für Physik, 54 (5-6), 347–366, 1929. doi: 10.1007/bf01375457

Ekkart, C. (1930). The theory and calculation of screening constants. Physical Review, 36 (5), 878–892. doi: 10.1103/physrev.36.878

Shull, H., Lowdin, P.-O. (1959). Superposition of configurations and natural spin orbitals. Applications to the He problem. The Journal of Chemical Physics, 30 (3), 617–626. doi: 10.1063/1.1730019

Chong, D. P. (1966). Different orbitals for different spins. Singlet ground state of Helium. The Journal of Chemical Physics, 45 (9), 3317–3318. doi: 10.1063/1.1728108

Green, L., Lewis, M., Mulder, M., Wyeth, C., Woll, J. (1954). Correlation energies and angular components of the wave functions of the ground states of H, He, and Li+. Physical Review, 93 (2), 273–279. doi: 10.1103/physrev.93.273

Bonham, R. A., Kohl, D. A. (1966). Simple correlated wavefunctions for the ground state of Heliumlike atoms. The Journal of Chemical Physics, 45 (7), 2471. doi: 10.1063/1.1727963

Dolgushin, M. D.; Jucys, A. (Ed.) (1971). Splitted orbitals and correlation energies for ground state of two-electron atoms. Theory of electronic shells in atoms and molecules, Mintis, Vilnius, 108–111. [in Russian]

Fraga, S., Ransil, B. J. (1967). Studies in molecular structure. VI. Potential curve for the interaction of two hydrogen atoms in the LCAO MO SCF approximation. The Journal of Chemical Physics, 35 (6), 2471. doi: 10.1063/1.1732194

Kolos, W., Wolniewicz, L. (1964). Accurate adiabatic treatment of the ground state of the hydrogen molecule. The Journal of Chemical Physics, 41 (12), 3663. doi: 10.1063/1.1725796

Swalen, J. D., de Heer, J. (1964). Many‐parameter alternant molecular orbital calculations for large cyclic systems with closed‐shell structure. The Journal of Chemical Physics, 40 (2), 378. doi: 10.1063/1.1725122

Hall, G. G., Amos, A. T.; Bates, D. R., Estermann, I. (Eds.) (1965). Molecular orbital theory of the spin properties of conjugated molecules. Advances in Atomic and Molecular Physics, Academic Press, New York, 1, 1–59. doi: 10.1016/s0065-2199(08)60279-1

Pople, J. A., Beveridge, D. L., Dobosh, P. A. (1968). Molecular orbital theory of the electronic structure of organic compounds. II. Spin densities in paramagnetic species. Journal of the American Chemical Society, 90 (16), 4201–4209. doi: 10.1021/ja01018a003

Kruglyak, Yu. A., Preuss, H., Yanoshek, R. (1970). Non-empirical computation of the electronic structure of benzyl radical. Ukrainsky Fizichesky Zhurnal, 15 (6), 980–988. [in Russian]

Kruglyak, Yu. A., Preuss, H., Yanoshek, R. (1971). Calculation of the electron shells of the benzyl radical by the unrestricted Hartree-Fock method on a Gaussian basis. Journal of Structural Chemistry, 12 (4), 623–629.

Kruglyak, Yu. A., Ukrainskii, I. I., Preuss, H., Yanoshek, R. (1970). An orbital analysis of the ab initio electron and spin populations of the atoms in the benzyl radical. Theoretical and Experimental Chemistry, 7 (6), 663–666.

Carrington, A., Smith, I. C. P. (1965). The electron spin resonance spectrum and spin density distribution of the benzyl radical. Molecular Physics, 9 (2), 137–147. doi: 10.1080/00268976500100151

Benson, H. G., Hudson, A. (1971). On the spin density distribution in the benzyl radical. Molecular Physics, 20 (1), 185–187,. doi: 10.1080/00268977100100181

Lloyd, R. V., Wood, D. E. (1974). Free radicals in adamantane matrix. EPR and Indo study of the benzyl, aniline, and phenoxy radicals and their fluorinated derivatives. Journal of the American Chemical Society, 96 (3), 659–665. doi: 10.1021/ja00810a004

McConnell, H. M. (1956). Electron densities in semiquinones by paramagnetic resonance. The Journal of Chemical Physics, 24 (3), 632. doi: 10.1063/1.1742580

McConnell, H. M. (1956). Indirect hyperfine interactions in the paramagnetic resonance spectra of aromatic free radicals. The Journal of Chemical Physics, 24 (4), 764. doi: 10.1063/1.1742605

Fessenden, R. W., Schuler, R. H. (1963). Electron spin resonance studies of transient alkyl radicals. The Journal of Chemical Physics, 39 (9), 2147. doi: 10.1063/1.1701415

Kruglyak, Yu. A., Mozdor, E. V., Kuprievich, V. A. (1970). Full configuration interaction of the benzyl radical. Ukrainsky Fizichnyi Zhurnal, 15 (1), 47–57. [In Ukrainian]

Kruglyak, Yu. A., Hibaum, G., Radomyselskaya, N. E. (1972). Electronic structure of the ground state of the benzyl radical in equilibrium geometry. Revue Roumaine de Chimie, 17 (5), 781–799. [in Russian]

Kruglyak, Yu. A., Mozdor, E. V. (1969). Study of the electronic structure of radicals by the CI method. 3. Excited states of the benzyl radical. Theoretica Chimica Acta, 15 (5), 374–384. doi: 10.1007/bf00528626

Kruglyak, Yu. A., Ukrainsky, I. I. (1970). Study of the electronic structure of alternant radicals by the DODS method. International Journal of Quantum Chemistry, 4 (1), 57–72. doi: 10.1002/qua.560040106

Ukrainsky, I. I. (1972). Electronic structure of long cumulene chains. International Journal of Quantum Chemistry, 6 (3), 473–489. doi: 10.1002/qua.560060309

Kruglyak, Yu. A., Ukrainskii, I. I.; Jucys, A. (Ed.) (1971). About calculation of spin density in the method of splitted orbitals. Theory of electronic shells in atoms and molecules, Mintis, Vilnius, 224–228. [in Russian]

Ovchinnikov, A. A., Ukrainskii, I. I., Kventsel, G. F. (1973). Theory of one-dimensional Mott semiconductors and the electronic structure of long molecules with conjugated bonds, Soviet Physics Uspekhi, 15 (5), 575–591.

Misurkin, I. A., Ovchinnikov, A. A. (1967). Electronic structure of long molecules with conjugated bonds. Theoretical and Experimental Chemistry, 3 (4), 245–248.

Berggren, K.-F., Johansson, B. (1968). A field theoretical description of states with different orbitals for different spins. International Journal of Quantum Chemistry, 2 (4), 483–508. doi: 10.1002/qua.560020407

Johansson, B., Berggren, K. F. (1969). Itinerant Antiferromagnetism in an Infinite Linear Chain. Physical Review, 181 (2), 855–862,. doi: 10.1103/physrev.181.855

Fukutome, H. (1968). Spin density wave and charge transfer wave in long conjugated molecules. Progress of Theoretical Physics, 40 (5), 998–1012. doi: 10.1143/ptp.40.998

Fukutome, H. (1968). Spin density wave and charge transfer. Wave in long conjugated molecules. Progress of Theoretical Physics, 40 (6), 1227–1245. doi: 10.1143/ptp.40.1227

Misurkin, I. A., Ovchinnikov, A. A. (1968). The electronic structures of large π-electron systems (graphite, polyacenes, cumulenes). Theoretical and Experimental Chemistry, 4 (1), 1–5.

Misurkin, I. A., Ovchinnikov, A. A. (1969). Electronic structure of high π-electron systems (graphite, polyacenes, cumulenes). Theoretica Chimica Acta, 13 (2), 115–124. doi: 10.1007/bf00533435

Ukrainsky, I. I., Kventsel, G. F. (1972). Electronic structure of long polyene chains with an impurity atom. Theoretica chimica Acta, 25 (4), 360–371. doi: 10.1007/bf00526568

Lieb, E. H., Wu, F. Y. (1968). Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Physical Review Letters, 20 (25), 1445–1448. doi: 10.1103/physrevlett.20.1445

Published

2014-12-25

Issue

Section

Physics and mathematics