Обобщенный метод Хартри-Фока и его версии: от атомов и молекул до полимеров
DOI:
https://doi.org/10.15587/2313-8416.2014.30726Słowa kluczowe:
квантовая химия, физика атомов, физика молекул, вычислительная химия, Хартри-Фок, полиены, полиацетилены, графит, кумуленыAbstrakt
Рассмотрены различные варианты обобщенного метода Хартри-Фока: расширенные методы G1–GF, неограниченный метод ХФ с и без проектирования на чистое по спину состояние, метод альтернантных молекулярных орбиталей (одно- и многопараметрический), оптимизированный по спиновой функции GI метод. Обсуждаются свойства решений различных методов и применение их к расчету электронных оболочек атомов, молекул, радикалов и карбоцепных полимеров (полиены, полиацетилены, графит и кумулены).
Bibliografia
Hartree, D. R. (1928). The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24 (1), 89–110,. doi: 10.1017/s0305004100011919
Hartree, D. R. (1928). The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion. Mathematical Proceedings of the Cambridge Philosophical Society, 24, (1), 111–132,. doi: 10.1017/s0305004100011920
Fock, V. A. (1930). An approximate method for solving the quantum many-body problem. Zeitschrift fur Physik, 61 (1-2), 126–148.
Rutherford, D. E. (1948). Substitutional Analysis. Edinburgh University Press, London.
Hammermesh, M. (1962), Group theory and its application to physical problems. Addison-Wesley, Reading, 509.
Kaplan, I. G. (1969). Symmetry of many-electron systems. Moscow: Nauka, 407. [in Russian]
Goddard III, W. A. (1967). Improved quantum theory of many-electron systems: I. Construction of eigenfunctions of which satisfy Pauli's principle. Physical Review, 157 (1), 73–80. doi: 10.1103/physrev.157.73
Goddard III, W. A. (1967). Improved quantum theory of many-electron systems: II. The basic method. Physical Review, 157 (1), 81–93. doi: 10.1103/physrev.157.81
Goddard III, W. A. (1968). Improved quantum theory of many-electron systems: III. The GF method. The Journal of Chemical Physics, 48 (1), 450–461. doi: 10.1063/1.1667943
Goddard III, W. A. (1968). Wavefunctions and correlation energies for two-, three-, and four-electron atoms. The Journal of Chemical Physics, 48 (3), 1008–1017,. doi: 10.1063/1.1668754
Goddard III, W. A. (1968). Improved quantum theory of many-electron systems: IV. Properties of GF wavefunctions. The Journal of Chemical Physics, 48 (12), 5337–5347,. doi: 10.1063/1.1668225
Ladner, R. C., Goddard III, W. A. (1969). Improved quantum theory of many-electron systems: V. The spin-coupling optimized GI method. The Journal of Chemical Physics, 51 (3), 1073–1087,. doi: 10.1063/1.1672106
Goddard III, W. A. (1970). The symmetric group and the spin generalized SCF method. International Journal of Quantum Chemistry, IIIs, 593–600.
Slater, J. C. (1929). The theory of complex spectra. Physical Review, 34, 1293–1323. doi: 10.1103/physrev.34.1293
Slater, J. C. (1930). Quantum theory of molecules and solids. Physical Review, 35 (2), 210–211.
Roothaan, C. C. J. (1951). New developments in molecular orbital theory. Review of Modern Physics, 23 (2), 69–89. doi: 10.1103/revmodphys.23.69
Amos, A. T., Hall, G. G. (1961). Single determinant wave functions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 263 (1315), 483–493. doi: 10.1098/rspa.1961.0175
Ukrainskii, I. I., Kruglyak, Yu. A., Preuss, H., Yanoshek, R. (1971). Projection of the wave function of the unlimited Hartree – Fock method on the doublet state in the case of benzyl radical. Theoretical and Experimental Chemistry, 8 (3), 242–249.
Amos, A. T.; Sinanoğlu, O. (Ed.) (1965). Some properties of π-ions and triplets. Modern quantum chemistry. Academic Press, New York, 157–170.
Ukrainsky, I. I., Kruglyak, Yu. A.; Filippov, G. F. (Ed.) (1974). Generalized Hartree – Fock method and its applications to calculation of the electronic shells of atoms, molecules, and polymers. Modern problems in optics and nuclear physics, Naukova Dumka, Kiev, 241–265. [in Russian]
Pople, J. A., Nesbet, R. K. (1954). Self-consistent orbitals for radicals. The Journal of Chemical Physics, 22 (3), 571–572,. doi: 10.1063/1.1740120
Lowdin, P.-O. (1955). Quantum theory of many-particle systems. III. Extension of the Hartree – Fock scheme to include degenerate systems and correlation effects. Physical Review, 97 (6), 1509–1520. doi: 10.1103/physrev.97.1509
Lowdin, P.-O.; Prigogine, I. (Ed.) (1959). Correlation problem in many-electron quantum mechanics. I. Review of different approaches and discussion of some current ideas. Advances in Chemical Physics, vol. 2, Interscience, New York, 207–322. doi: 10.1002/9780470143483.ch7
Lowdin, P.-O. (1964). Angular momentum wave functions constructed by projection operators. Review of Modern Physics, 36 (4), 966–976.
Sasaki, F., Ohno, K. (1963). Spin-component analysis of single-determinant wavefunctions. Journal of Mathematical Physics, 4 (9), 1140–1147. doi: 10.1063/1.1704044
Smith, V. H. (1964). Projection of exact spin eigenfunctions. Journal Chemical Physics, 41 (1), 277. doi: 10.1063/1.1725634
Sando, K. M., Harriman, J. E. (1967). Spin-projected and extended SCF calculations. The Journal of Chemical Physics, 47, 180. doi: 10.1063/1.1711843
Harris, F. (1966). On the calculation of spin densities. Molecular Physics, 11 (3), 243–256. doi: 10.1080/00268976600101081
Pauncz, R. (1967). Alternant Molecular Orbital Method. W. B. Saunders, London.
Lowdin, P.-O. (1962). Band theory, valence band and tight-binding calculations. Journal of Applied Physics, 33 (1), 251–280. doi: 10.1063/1.1777106
Pauncz, R., de Heer, J., Lowdin, P.-O. (1962). Studies of the alternant molecular orbital method. I. General energy expression for an alternant system with closed-shell structure. Journal Chemical Physics, 36 (9), 2247–2256,. doi: 10.1063/1.1732872
Pauncz, R., de Heer, J., Lowdin, P.-O. (1962). Studies of the alternant molecular orbital method. II. Application to Cyclic Systems. Journal Chemical Physics, 36 (9), 2257–2265. doi: 10.1063/1.1732873
Hückel, E. (1930). Zur Quantentheorie der Doppelbindung. Zeitschrift für Physik, 60 (7-8), 423–456. doi: 10.1007/bf01341254
Hückel, E. (1931). Quantentheoretische Beiträge zum Benzolproblem. Zeitschrift für Physik, 70 (3-4), 204–286. doi: 10.1007/bf01339530
Kruglyak, Yu. A. et. al (1967). Methods of computations in quantum chemistry. Calculation of π-electronic molecular structure by simple molecular orbital methods, Naukova Dumka, Kiev, 161.
Coulson, C. A., Longuet-H, H. C. (1947). The electronic structure of conjugated systems. I. General theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 191 (1024), 39–60. doi: 10.1098/rspa.1947.0102
Brickstock, A., Pople, J. A. (1954). Resonance energies and charge distributions of unsaturated hydrocarbon radicals and ions. Transaction of the Faraday Society, 50, 901–911. doi: 10.1039/tf9545000901
Koopmans, T. A. (1933). Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica, 1 (1-6), 104–11,. doi: 10.1016/s0031-8914(34)90011-2
Brillouin, L. (1933). La méthode du champ self-consistent, (Actualites Scientifiques et Industrielles, no. 71), Hermann, Paris.
Brillouin, L. (1934). Les champs "self-consistents" de Hartree et de Fock, (Actualites Scientifiques et Industrielles, no. 159), Hermann, Paris, 47
Mozdor, E. V., Kruglyak, Yu. A., Kuprievich, V. A. (1968). Matrix elements of the physical value operators on single-configurational functions for radicals. Theoretical and Experimental Chemistry, 5 (6), 509–514.
Kruglyak, Yu. A., Mozdor, E. V., Kuprievich, V. A. (1971). Study of the electronic structure of radicals by the CI method. I. Matrix elements of the physical value operators. Croatica Chemica Acta, 43, 15–22.
Popov, N. A. (1970). Symmetry properties of one-electron orbitals in the method of different orbitals for different spins. Journal of Structural Chemistry, 11 (4), 670–676. doi: 10.1007/bf00743441
Hylleraas, E. A. Neue berechnung der energie des Heliums im grundzustande, sowie des tiefsten terms von ortho-helium. Zeitschrift für Physik, 54 (5-6), 347–366, 1929. doi: 10.1007/bf01375457
Ekkart, C. (1930). The theory and calculation of screening constants. Physical Review, 36 (5), 878–892. doi: 10.1103/physrev.36.878
Shull, H., Lowdin, P.-O. (1959). Superposition of configurations and natural spin orbitals. Applications to the He problem. The Journal of Chemical Physics, 30 (3), 617–626. doi: 10.1063/1.1730019
Chong, D. P. (1966). Different orbitals for different spins. Singlet ground state of Helium. The Journal of Chemical Physics, 45 (9), 3317–3318. doi: 10.1063/1.1728108
Green, L., Lewis, M., Mulder, M., Wyeth, C., Woll, J. (1954). Correlation energies and angular components of the wave functions of the ground states of H–, He, and Li+. Physical Review, 93 (2), 273–279. doi: 10.1103/physrev.93.273
Bonham, R. A., Kohl, D. A. (1966). Simple correlated wavefunctions for the ground state of Heliumlike atoms. The Journal of Chemical Physics, 45 (7), 2471. doi: 10.1063/1.1727963
Dolgushin, M. D.; Jucys, A. (Ed.) (1971). Splitted orbitals and correlation energies for ground state of two-electron atoms. Theory of electronic shells in atoms and molecules, Mintis, Vilnius, 108–111. [in Russian]
Fraga, S., Ransil, B. J. (1967). Studies in molecular structure. VI. Potential curve for the interaction of two hydrogen atoms in the LCAO MO SCF approximation. The Journal of Chemical Physics, 35 (6), 2471. doi: 10.1063/1.1732194
Kolos, W., Wolniewicz, L. (1964). Accurate adiabatic treatment of the ground state of the hydrogen molecule. The Journal of Chemical Physics, 41 (12), 3663. doi: 10.1063/1.1725796
Swalen, J. D., de Heer, J. (1964). Many‐parameter alternant molecular orbital calculations for large cyclic systems with closed‐shell structure. The Journal of Chemical Physics, 40 (2), 378. doi: 10.1063/1.1725122
Hall, G. G., Amos, A. T.; Bates, D. R., Estermann, I. (Eds.) (1965). Molecular orbital theory of the spin properties of conjugated molecules. Advances in Atomic and Molecular Physics, Academic Press, New York, 1, 1–59. doi: 10.1016/s0065-2199(08)60279-1
Pople, J. A., Beveridge, D. L., Dobosh, P. A. (1968). Molecular orbital theory of the electronic structure of organic compounds. II. Spin densities in paramagnetic species. Journal of the American Chemical Society, 90 (16), 4201–4209. doi: 10.1021/ja01018a003
Kruglyak, Yu. A., Preuss, H., Yanoshek, R. (1970). Non-empirical computation of the electronic structure of benzyl radical. Ukrainsky Fizichesky Zhurnal, 15 (6), 980–988. [in Russian]
Kruglyak, Yu. A., Preuss, H., Yanoshek, R. (1971). Calculation of the electron shells of the benzyl radical by the unrestricted Hartree-Fock method on a Gaussian basis. Journal of Structural Chemistry, 12 (4), 623–629.
Kruglyak, Yu. A., Ukrainskii, I. I., Preuss, H., Yanoshek, R. (1970). An orbital analysis of the ab initio electron and spin populations of the atoms in the benzyl radical. Theoretical and Experimental Chemistry, 7 (6), 663–666.
Carrington, A., Smith, I. C. P. (1965). The electron spin resonance spectrum and spin density distribution of the benzyl radical. Molecular Physics, 9 (2), 137–147. doi: 10.1080/00268976500100151
Benson, H. G., Hudson, A. (1971). On the spin density distribution in the benzyl radical. Molecular Physics, 20 (1), 185–187,. doi: 10.1080/00268977100100181
Lloyd, R. V., Wood, D. E. (1974). Free radicals in adamantane matrix. EPR and Indo study of the benzyl, aniline, and phenoxy radicals and their fluorinated derivatives. Journal of the American Chemical Society, 96 (3), 659–665. doi: 10.1021/ja00810a004
McConnell, H. M. (1956). Electron densities in semiquinones by paramagnetic resonance. The Journal of Chemical Physics, 24 (3), 632. doi: 10.1063/1.1742580
McConnell, H. M. (1956). Indirect hyperfine interactions in the paramagnetic resonance spectra of aromatic free radicals. The Journal of Chemical Physics, 24 (4), 764. doi: 10.1063/1.1742605
Fessenden, R. W., Schuler, R. H. (1963). Electron spin resonance studies of transient alkyl radicals. The Journal of Chemical Physics, 39 (9), 2147. doi: 10.1063/1.1701415
Kruglyak, Yu. A., Mozdor, E. V., Kuprievich, V. A. (1970). Full configuration interaction of the benzyl radical. Ukrainsky Fizichnyi Zhurnal, 15 (1), 47–57. [In Ukrainian]
Kruglyak, Yu. A., Hibaum, G., Radomyselskaya, N. E. (1972). Electronic structure of the ground state of the benzyl radical in equilibrium geometry. Revue Roumaine de Chimie, 17 (5), 781–799. [in Russian]
Kruglyak, Yu. A., Mozdor, E. V. (1969). Study of the electronic structure of radicals by the CI method. 3. Excited states of the benzyl radical. Theoretica Chimica Acta, 15 (5), 374–384. doi: 10.1007/bf00528626
Kruglyak, Yu. A., Ukrainsky, I. I. (1970). Study of the electronic structure of alternant radicals by the DODS method. International Journal of Quantum Chemistry, 4 (1), 57–72. doi: 10.1002/qua.560040106
Ukrainsky, I. I. (1972). Electronic structure of long cumulene chains. International Journal of Quantum Chemistry, 6 (3), 473–489. doi: 10.1002/qua.560060309
Kruglyak, Yu. A., Ukrainskii, I. I.; Jucys, A. (Ed.) (1971). About calculation of spin density in the method of splitted orbitals. Theory of electronic shells in atoms and molecules, Mintis, Vilnius, 224–228. [in Russian]
Ovchinnikov, A. A., Ukrainskii, I. I., Kventsel, G. F. (1973). Theory of one-dimensional Mott semiconductors and the electronic structure of long molecules with conjugated bonds, Soviet Physics Uspekhi, 15 (5), 575–591.
Misurkin, I. A., Ovchinnikov, A. A. (1967). Electronic structure of long molecules with conjugated bonds. Theoretical and Experimental Chemistry, 3 (4), 245–248.
Berggren, K.-F., Johansson, B. (1968). A field theoretical description of states with different orbitals for different spins. International Journal of Quantum Chemistry, 2 (4), 483–508. doi: 10.1002/qua.560020407
Johansson, B., Berggren, K. F. (1969). Itinerant Antiferromagnetism in an Infinite Linear Chain. Physical Review, 181 (2), 855–862,. doi: 10.1103/physrev.181.855
Fukutome, H. (1968). Spin density wave and charge transfer wave in long conjugated molecules. Progress of Theoretical Physics, 40 (5), 998–1012. doi: 10.1143/ptp.40.998
Fukutome, H. (1968). Spin density wave and charge transfer. Wave in long conjugated molecules. Progress of Theoretical Physics, 40 (6), 1227–1245. doi: 10.1143/ptp.40.1227
Misurkin, I. A., Ovchinnikov, A. A. (1968). The electronic structures of large π-electron systems (graphite, polyacenes, cumulenes). Theoretical and Experimental Chemistry, 4 (1), 1–5.
Misurkin, I. A., Ovchinnikov, A. A. (1969). Electronic structure of high π-electron systems (graphite, polyacenes, cumulenes). Theoretica Chimica Acta, 13 (2), 115–124. doi: 10.1007/bf00533435
Ukrainsky, I. I., Kventsel, G. F. (1972). Electronic structure of long polyene chains with an impurity atom. Theoretica chimica Acta, 25 (4), 360–371. doi: 10.1007/bf00526568
Lieb, E. H., Wu, F. Y. (1968). Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Physical Review Letters, 20 (25), 1445–1448. doi: 10.1103/physrevlett.20.1445
##submission.downloads##
Opublikowane
Numer
Dział
Licencja
Copyright (c) 2014 Юрий Алексеевич Кругляк
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.