About possibility of recrystallization of dispersible rutile in threadlike crystals in fusion of halide of alkaline metals

Authors

  • Валерий Павлович Шапорев National technical university «Kharkov polytechnic institute» 21, street of Frunze, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0003-1652-4688
  • Алексей Валерьевич Шестопалов National technical university «Kharkov polytechnic institute» 21, street of Frunze, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-6268-8638
  • Инна Вячеславовна Питак National technical university «Kharkov polytechnic institute» 21, street of Frunze, Kharkov, Ukraine, 61002, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.35865

Keywords:

threadlike crystals, titanium oxide, kinetic parameters, crystallization, molten salt

Abstract

In the article the theoretical and experimental results of practical receipt of threadlike crystals are represented by recrystallization of dispersible rutile saluted in fusion of halide of alkaline metals. The expected kinetic parameters allow to organize a process with the set speed of flowing and necessary output of product. Possibility of recrystallization of titanium oxide is set in molten salt at blowing out by gas and gas with a repairer as the threadlike crystals with fibred form

Author Biographies

Валерий Павлович Шапорев, National technical university «Kharkov polytechnic institute» 21, street of Frunze, Kharkov, Ukraine, 61002

Professor

Department of chemical technique and industrial ecology

Алексей Валерьевич Шестопалов, National technical university «Kharkov polytechnic institute» 21, street of Frunze, Kharkov, Ukraine, 61002

Candidate of engineering sciences, associate professor of department of chemical technique and industrial ecology

Инна Вячеславовна Питак, National technical university «Kharkov polytechnic institute» 21, street of Frunze, Kharkov, Ukraine, 61002

Candidate of engineering sciences, associate professor of department of chemical technique and industrial ecology

References

Siegel, R. W., Ramasamy, S., Hahn, H., Zongquan, Li, Ting, Lu, Gronsky, R. (1988). Synthesis, Characterization, and Properties of Nanophase TiO2. Journal of Materials Research, 3 (6), 1367–1372. doi: 10.1557/jmr.1988.1367

Karroll-Porchinskiy, Ts. (1966). Materials of the future. Heat-resistant and heatproof fibers and fibred materials. Moscov, Khimiya, 237.

Suyama, Y., Kato, A. (1976). TiO2 produced by vapor-phase oxygenolysis of TiCl4. Journal of the American Ceramic Society, 59 (3-4), 146–149. doi: 10.1111/j.1151-2916.1976.tb09453.x

Tretyakov, Yu. D. (2006). Mykro- and nanoworld of modern materials Moscov, MGU, 69.

Weibel, A., Bouchet, R., Denoyel, R., Knauth, P. (2007). Hot pressing of nanocrystalline TiO2 (anatase) ceramics with controlled microstructure. Journal of the European Ceramic Society, 27 (7), 2641–2646. doi: 10.1016/j.jeurceramsoc.2006.11.073

Knauth, P., Bouchet, R., Schaf, O., Weibel, A., Auer, G. (2002). Functionalized TiO2 nanoparticles for pigments, photoelectrochemistry, and solid state chemical sensors. Synthesis, Functionalization and Surface Treatments of Nanoparticles, ed. M.-I. Baraton. American Science Publications, Stevenson (Chapter 8).

Shaporev, V. P., Krasnikova, L. A., Tkach, G. A. (1991). Patent of USSR № 1649851. МКI С 30 В 9/12, 23/62, 29/22. The method of whiskering titian’s of alkaline threw a catch and refractory oxides. Application number 46186305/28 1988.13.12, application date: January 15, 1991 (for the official use).

Shaporev, V. P., Krasnikova, L. A., Tkach, G. A. (1990). Patent of USSR № 1619756. МКI С 30 В 29/62, 29/32, 9/00. Device for the whiskering. Application number 4653751 1989.23.02, application date: September 8, 1990 (publication forbidden).

Shaporev, V. P. (1994). Technology of inorganic reinforcing fillers. Kharkov state polytechnic institute, Kharkiv, Ukraine, 365.

Shaporev, V. P., Sebko, V. V. (2012). About possibilities of application of methods of nano-chemistries for the analysis and intensification of chemical technological processes. Visnyk NTU «KhPI», 61 (967), 164–176.

Norrish, K. (1951). Priderite, a new mineral from the leucite-lamproites of the west Kimherley area, Western Australia. Mineralogical Magazine, 29 (212), 496–501. doi: 10.1180/minmag.1951.029.212.03

Pring, A., Jefferson, O. A. (1983). Incommensurate superlattice ordering in priderite. Mineralogical magazine, March 47, 65–68. doi: 10.1180/minmag.1983.047.342.11

Pryce, M. W., Hodge, L. C., Griddle, A. J. (1984). Griddle Jeppeite, a new K-Ba-Fe titanate from Walgidee Hills, Western Australia. Mineralogical magazine, 48 (347), 263–266. doi: 10.1180/minmag.1984.048.347.11

Povarennykh, A. S. (1966). Crystals chemistry classification of mineral prospects. Kiev, Naukova Dumka, 547.

Bokiy, G. B. Crystals chemistry. Moscow, Nauka, 400.

Published

2015-01-25

Issue

Section

Technical Sciences