Thermoelectric phenomena and devices in Landauer-Datta-Lundstrom conception
DOI:
https://doi.org/10.15587/2313-8416.2015.35891Keywords:
nanophysics, nanoelectronics, molecular electronics, thermoelectric effects, thermoelectric devices, Seebeck effect, Peltier effect, Lorentz numbers, Wiedemann-Franz law, thermoelectric coefficientsAbstract
On the basis of the «bottom-up» approach of Landauer-Datta-Lundstrom transport model of modern nanoelectronics the thermoelectric Seebeck and Peltier phenomena are considered, the Wiedemann – Franz law and Lorenz numbers as well as the four transport coefficients – specific resistivity, Seebeck and Peltier coefficients, and electronic thermal conductivity are qualitatively discussed.
References
Kruglyak, Yu. A. (2013). The Generalized Landauer-Datta-Lunstrom Electron Transport Model. Nanosystems, Nanomaterials, Nanotechnologies, 11 (3), 519–549.
Kruglyak, Yu. A. (2013). From Ballistic Conductivity to Diffusional in the Landauer-Datta-Lunstrom Transport Model. Nanosystems, Nanomaterials, Nanotechnologies, 11 (4), 655–677.
Ioffe, A. F. (1957). Semiconductor Thermoelements and Thermoelectric Cooling. London: Infosearch, 184.
Anatychuk, L. I. (1979). Thermoelements and thermoelectric devices. Kiev: Naukova Dumka, 385.
Anatychuk, L. I., Semenyuk, V. А. (1992). Optimal control of properties of thermoelectric materials and devices. Chernovtsy: «Prut», 264.
Anatychuk, L. I., Bulat, L. P. (2001). Semiconductors in extremal temperature conditions. Leningrad: Nauka, 224.
Anatychuk, L. I. (2003). Thermoelectricity. Vol. 2. Thermoelectrical Energy Converters. Kiev – Chernovtsy: Institute of Thermoelectricity, "Bukrek", 376.
Anatychuk, L. I. (2009). Thermoelectricity. Vol. 1. Physics of Thermoelectricity. Kiev – Chernovtsy: Institute of Thermoelectricity, "Bukrek", 388.
Ashcroft, N. W., Mermin, N. D. (1979). Solid State Physics (Philadelphia: Suanders College, 824.
Mahan, G. D., Bartkowiak, M. (1999). Wiedemann – Franz law at boundaries, Applied Physics Letters, 74 (7), 953–954. doi: 10.1063/1.123420
Smith, A. C., Janak, J., Adler, R. (1965). Electronic Conduction in Solids. New York: McGraw-Hill.
Onsager, L. (1931). Reciprocal Relations in Irreversible Processes. I. Physical Review, 37 (4), 405–426 doi: 10.1103/physrev.37.405
Institute of Thermoelectricity, NASU/МEU. Available at: www.inst.cv.ua
Majumdar, A. (2004). Thermoelectricity in semiconductor nanostructures. Science, 303 (5659), 778–779 doi: 10.1126/science.1093164
Dresselhaus, M., Chen, G., Tang, M., Yang, R., Lee, H., Wang, D., Ren, Z., Fleureal, J.-P., Gogna, P. (2007). New directions for low dimensional thermoelectric materials. Advanced Materials, 19 (8), 1043–1053. doi: 10.1002/adma.200600527
Minnich, A. J., Dresselhaus, M. S., Ren, Z. F., Chen, G. (2009). Bulk nanostructured thermoelectric materials: current research and future prospects. Energy and Environmental Science, 2, 466–479. doi: 10.1039/b822664b
Hode, M. (2005). On one-Dimensional Analysis of Thermoelectric Modules (TEMs). IEEE Transactions on Components and Packaging Technologies, 28 (2), 218–229. doi: 10.1109/tcapt.2005.848532
Hode, M. (2007). Optimal Pellet Geometries for Thermoelectric Refrigeration. IEEE Transactions on Components and Packaging Technologies, 30 (1), 50–58. doi: 10.1109/tcapt.2007.892068
Hode, M. (2010). Optimal Pellet Geometries for Thermoelectric Power Generation. IEEE Transactions on Components and Packaging Technologies, 33 (2), 307–318. doi: 10.1109/tcapt.2009.2039934
Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/resources/11763
Datta, S. (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/courses/FoN1
Kruglyak, Yu. O., Kruglyak, N. Yu., Strikha, М. V. (2013). Thermoelectric phenomena by «bottom – up» approach, Sensor Electronics Microsys. Tech., 13 (1), 6–21.
Kruglyak, Yu. O. (2013). Lessons of nanoelectronics. 4. Thermoelectric phenomena by «bottom – up» approach. Physics in Higher Education, 19 (4), 70–85.
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Юрій Олексійович Кругляк
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.