Thermoelectric phenomena and devices in Landauer-Datta-Lundstrom conception

Authors

  • Юрий Алексеевич Кругляк Odessa State Environmental University, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.35891

Keywords:

nanophysics, nanoelectronics, molecular electronics, thermoelectric effects, thermoelectric devices, Seebeck effect, Peltier effect, Lorentz numbers, Wiedemann-Franz law, thermoelectric coefficients

Abstract

On the basis of the «bottom-up» approach of Landauer-Datta-Lundstrom transport model of  modern nanoelectronics the thermoelectric Seebeck and Peltier phenomena are considered, the Wiedemann – Franz law and Lorenz numbers as well as the four transport coefficients – specific resistivity, Seebeck and Peltier coefficients, and electronic thermal conductivity are qualitatively discussed.

Author Biography

Юрий Алексеевич Кругляк, Odessa State Environmental University

Doctor of Chemical Sciences, Professor

Department of Information Technologies

References

Kruglyak, Yu. A. (2013). The Generalized Landauer-Datta-Lunstrom Electron Transport Model. Nanosystems, Nanomaterials, Nanotechnologies, 11 (3), 519–549.

Kruglyak, Yu. A. (2013). From Ballistic Conductivity to Diffusional in the Landauer-Datta-Lunstrom Transport Model. Nanosystems, Nanomaterials, Nanotechnologies, 11 (4), 655–677.

Ioffe, A. F. (1957). Semiconductor Thermoelements and Thermoelectric Cooling. London: Infosearch, 184.

Anatychuk, L. I. (1979). Thermoelements and thermoelectric devices. Kiev: Naukova Dumka, 385.

Anatychuk, L. I., Semenyuk, V. А. (1992). Optimal control of properties of thermoelectric materials and devices. Chernovtsy: «Prut», 264.

Anatychuk, L. I., Bulat, L. P. (2001). Semiconductors in extremal temperature conditions. Leningrad: Nauka, 224.

Anatychuk, L. I. (2003). Thermoelectricity. Vol. 2. Thermoelectrical Energy Converters. Kiev – Chernovtsy: Institute of Thermoelectricity, "Bukrek", 376.

Anatychuk, L. I. (2009). Thermoelectricity. Vol. 1. Physics of Thermoelectricity. Kiev – Chernovtsy: Institute of Thermoelectricity, "Bukrek", 388.

Ashcroft, N. W., Mermin, N. D. (1979). Solid State Physics (Philadelphia: Suanders College, 824.

Mahan, G. D., Bartkowiak, M. (1999). Wiedemann – Franz law at boundaries, Applied Physics Letters, 74 (7), 953–954. doi: 10.1063/1.123420

Smith, A. C., Janak, J., Adler, R. (1965). Electronic Conduction in Solids. New York: McGraw-Hill.

Onsager, L. (1931). Reciprocal Relations in Irreversible Processes. I. Physical Review, 37 (4), 405–426 doi: 10.1103/physrev.37.405

Institute of Thermoelectricity, NASU/МEU. Available at: www.inst.cv.ua

Majumdar, A. (2004). Thermoelectricity in semiconductor nanostructures. Science, 303 (5659), 778–779 doi: 10.1126/science.1093164

Dresselhaus, M., Chen, G., Tang, M., Yang, R., Lee, H., Wang, D., Ren, Z., Fleureal, J.-P., Gogna, P. (2007). New directions for low dimensional thermoelectric materials. Advanced Materials, 19 (8), 1043–1053. doi: 10.1002/adma.200600527

Minnich, A. J., Dresselhaus, M. S., Ren, Z. F., Chen, G. (2009). Bulk nanostructured thermoelectric materials: current research and future prospects. Energy and Environmental Science, 2, 466–479. doi: 10.1039/b822664b

Hode, M. (2005). On one-Dimensional Analysis of Thermoelectric Modules (TEMs). IEEE Transactions on Components and Packaging Technologies, 28 (2), 218–229. doi: 10.1109/tcapt.2005.848532

Hode, M. (2007). Optimal Pellet Geometries for Thermoelectric Refrigeration. IEEE Transactions on Components and Packaging Technologies, 30 (1), 50–58. doi: 10.1109/tcapt.2007.892068

Hode, M. (2010). Optimal Pellet Geometries for Thermoelectric Power Generation. IEEE Transactions on Components and Packaging Technologies, 33 (2), 307–318. doi: 10.1109/tcapt.2009.2039934

Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/resources/11763

Datta, S. (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/courses/FoN1

Kruglyak, Yu. O., Kruglyak, N. Yu., Strikha, М. V. (2013). Thermoelectric phenomena by «bottom – up» approach, Sensor Electronics Microsys. Tech., 13 (1), 6–21.

Kruglyak, Yu. O. (2013). Lessons of nanoelectronics. 4. Thermoelectric phenomena by «bottom – up» approach. Physics in Higher Education, 19 (4), 70–85.

Published

2015-01-25

Issue

Section

Physics and mathematics