Transfer of heat by phonons in Landauer-Datta-Lundstrom transport model
DOI:
https://doi.org/10.15587/2313-8416.2015.36332Keywords:
nanophysics, nanoelectronics, phonon transport, thermal conductivity quantum, transmission coefficient, phonon modes, Debye model, phonon scatteringAbstract
On the basis of Landauer-Datta-Lundstrom transport model the generalized model of heat transfer by phonons is formulated. Similarly to the Fermi window for electron conductivity the concept of the Fermi window for phonon conductivity is introduced and used to obtain the general expression for the lattice thermal conductivity with the quantum of thermal conductivity appearing at the very beginning. There are emphasized the similarity and differences in the construction of the theory of electron conductivity and the theory of heat conduction
References
Supriyo Datta, Lessons from Nanoelectronics: A New Perspective on Transport (2012). Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/courses/FoN1
Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/resources/11763
Kruglyak, Yu. (2014). Landauer-Datta-Lundstrom Generalized Transport Model for Nanoelectronics. Journal of Nanoscience, 2014, 15. doi: 10.1155/2014/725420
Kruglyak, Yu. A. (2014). A Generalized Landauer-Datta-Lundstrom Electron Transport Model. Russian Journal of Physical Chemistry, 88 (11), 1826–1836. doi: 10.1134/s0036024414110119
Ziman, J. M. (1960). Electrons and phonons. The theory of transport phenomena in solids. Oxford at the Clarendon Press, Oxford, 488.
Ziman, J. M. (1964). Principles of the theory of solids. Cambridge University Press, Cambridge, 472.
Kittel, C. (1971). Introduction to solid state physics, 4th ed. John Wiley and Sons, New York, 791.
Ashcroft, N. W., Mermin, N. D. (1979). Solid State Physics (Philadelphia: Suanders College, 486.
Mohr, M., Maultzsch, J., Dobardžić, E., Reich, S., Milošević, I., Damnjanović, M., Bosak, A., Krisch, M., Thomsen, C. (2007). Phonon dispersion of graphite by inelastic x-ray scattering. Physical Review B, 76 (3), 035439/7. doi: 10.1103/physrevb.76.035439
Eletskii, A. V., Iskandarova, I. M., Knizhnik, A. A., Krasikov, D. N. (2011). Graphene: fabrication methods and thermophysical properties. Physics Uspekhi, 54, 227–258. doi: 10.3367/UFNe.0181.201103a.0233
Katsnelson, M. I. (2012). Graphene: Carbon in Two Dimensions. New York: Cambridge University Press. doi: 10.1017/cbo9781139031080
Kruglyak, Yu. A. (2013). The Generalized Landauer-Datta-Lunstrom Electron Transport Model. Nanosystems, Nanomaterials, Nanotechnologies, 11 (3), 519–549. Erratum: ibid, 12 (2), 415.
Schwab, K., Henriksen, E. A., Worlock, J. M., Roukes, M. L. (2000). Measurement of the quantum of thermal conductance. Nature, 404, 974.
Jeong, C., Kim, R., Luisier, M., Datta, S., Lundstrom, M. (2010). On Landauer vs. Boltzmann and Full Band vs. Effective Mass Evaluation of Thermoelectric Transport Coefficients. Journal of Applied Physics, 107 (2), 023707. doi: 10.1063/1.3291120
Lundstrom, M. (2012). Fundamentals of Carrier Transport. Cambridge UK: Cambridge University Press.
Jeong, C., Datta, S., Lundstrom, M. (2011). Full Dispersion vs. Debye Model Evaluation of Lattice Thermal Conductivity with a Landauer Approach. Journal of Applied Physics, 109, 073718/8. doi: 10.1063/1.3567111
Kruglyak, Yu. A., Kruglyak, N. E. (2013). Lessons of nanoelectronics. 3. Electronic conductivity and conductivity modes by «bottom – up» approach. Physics in Higher Education, 19 (3), 99–110.
Fisher, T. S. (2013). Thermal Energy at the Nanoscale (Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/courses/2
Kruglyak, Yu. A., Kruglyak, N. E. (2013). Lessons of nanoelectronics. 2. Elastic resistor model and new Ohm’s law by «bottom – up» approach. Physics in Higher Education, 19 (2), 161–173.
Callaway, J. (1959). Model for lattice thermal conductivity at low temperatures. Physical Review, 113 (4), 1046–1015 doi: 10.1103/physrev.113.1046
Holland, M. G. (1963). Analysis of lattice thermal conductivity. Physical Review, 132 (6), 2461–2471. doi: 10.1103/physrev.132.2461
Jeong, C., Datta, S., Lundstrom, M. (2012). Thermal conductivity of bulk and thin-film silicon: a Landauer approach. Journal of Applied Physics, 111, 093708. doi: 10.1063/1.4710993
Gang, C. (2005). Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. New York: Oxford University Press, 560.
Glassbrenner, C. J., Slack, G. A. (1964). Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point. Physical Review, 134 (4A), A1058–A1069. doi: 10.1103/physrev.134.a1058
Pendry, J. B. (1983). Quantum limits to the flow of information and entropy. Journal of Physics A: Mathematical and General, 16 (10), 2161. doi: 10.1088/0305-4470/16/10/012
Angelescu, D. E., Cross, M. C., Roukes, M. L. (1998). Heat transport in mesoscopic systems, Superlattices and Microstructures, 23 (3-4), 673–689. doi: 10.1006/spmi.1997.0561
Rego, L. G. C., Kirczenow, G. (1998). Quantized Thermal Conductance of Dielectric Quantum Wires. Physical Review Letters, 81 (1), 232–235. doi: 10.1103/physrevlett.81.232
Blencowe, M. P. (1999). Quantum energy flow in mesoscopic dielectric structures. Physical Review B, 59 (7), 4992–4998. doi: 10.1103/physrevb.59.4992
Rego, L. G. C., Kirczenow, G. (1999). Fractional exclusion statistics and the universal quantum of thermal conductance: A unifying approach. Physical Review B, 59 (20), 13080–13086. doi: 10.1103/physrevb.59.13080
Krive, I. V., Mucciolo, E. R. (1999). Transport properties of quasiparticles with fractional exclusion statistics. Physical Review B, 60 (3), 1429–1432. doi: 10.1103/physrevb.60.1429
Caves, C. M., Drummond, P. D. (1994). Quantum limits on bosonic communication rates, Reviews of Modern Physics, 66 (2), 481–537. doi: 10.1103/revmodphys.66.481
Kruglyak, Yu. A., Kruglyak, N. Yu., Strikha, М. V. (2013). Lessons of nanoelectronics. Thermoelectric phenomena in «bottom – up» approach, Sensor Electronics Microsys. Tech., 13 (1), 6–21.
Kruglyak, Yu. A. (2014). Lessons of nanoelectronics. 5. Phonon transport in «bottom – up» approach. Physics in Higher Education, 20 (1), 39–43.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Юрій Олексійович Кругляк
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.