Accounting for scattering in the Landauer-Datta-Lundstrom transport model

Authors

  • Юрій Олексійович Кругляк Odessa State Environmental University, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.38847

Keywords:

nanophysics, nanoelectronics, electron scattering, phonon scattering, transmission coefficient, mean free path, diffusion coefficient, mobility, Si MOSFET

Abstract

Scattering of carriers in the LDL transport model during the changes of the scattering times in the collision processes is considered qualitatively. The basic relationship between the transmission coefficient T and the average mean free path  is derived for 1D conductor. As an example, the experimental data for Si MOSFET are analyzed with the use of various models of reliability.

Author Biography

Юрій Олексійович Кругляк, Odessa State Environmental University

Doctor of Chemical Sciences, Professor

Department of Information Technologies

References

Datta Supriyo. Lessons from Nanoelectronics: A New Perspective on Transport (2012). Hackensack, New Jersey: World Scientific Publishing Company, 473. Available at: www.nanohub.org/courses/FoN1

Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company, 227. Available at: www.nanohub.org/resources/11763

Kruglyak, Yu. A. (2013). The Generalized Landauer – Datta – Lunstrom Electron Transport Model. Nanosystems, Nanomaterials, Nanotechnologies, 11 (3), 519–549. Erratum: ibid, (2014). 12 (2), 415.

Kruglyak, Yu. A. Heat transfer by phonons in Landauer-Datta-Lunstrom transport model, ScienceRise. – 2015. – Т. 2, № 2 (7). – С. 81–93. doi: 10.15587/2313-8416.2015.36332

Landauer, R. (1957). Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM Journal of Research and Development, 1 (3), 223–231. doi: 10.1147/rd.13.0223

Landauer, R. (1970). Electrical resistance of disordered one-dimensional lattices. Philosophical Magazine, 21 (172), 863–867. doi: 10.1080/14786437008238472

Lundstrom, M. (2000). Fundamentals of Carrier Transport, 2nd Ed. Cambridge: Cambridge Univ. Press.

Dirac, P. A. M. (1927). The Quantum Theory of the Emission and Absorption of Radiation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 114 (767), 243–265. doi: 10.1098/rspa.1927.0039

Fermi, E. (1950). Nuclear Physics. University of Chicago Press.

Jeong, C., Kim, R., Luisier, M., Datta, S., Lundstrom, M. (2010). On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients. Journal of Applied Physics, 107 (2), 023707. doi: 10.1063/1.3291120

Kruglyak, Yu. A. (2013). From Ballistic Conductivity to Diffusional in the Landauer-Datta-Lunstrom Transport Model, Nanosystems, Nanomaterials, Nanotechnologies, 11 (4), 655–677.

Shockley, W. (1962). Diffusion and Drift of Minority Carriers in Semiconductors for Comparable Capture and Scattering Mean Free Paths. Physical Review, 125 (5), 1570–1576. doi: 10.1103/physrev.125.1570

Jeong, C., Antoniadis, D. A., Lundstrom, M. S. (2009). On Backscattering and Mobility in Nanoscale Silicon MOSFETs. IEEE Transactions on Electron Devices, 56 (11), 2762–2769. doi: 10.1109/ted.2009.2030844

Pierret, R. F. (1996). Semiconductor Device Fundamentals. Reading, MA: Addison–Wesley.

Lundstrom, M. (2008). ECE 612: Nanoscale Transistors. Lecture 4. Polysilicon Gates. QM Effects. Available at: www.nanohub.org/resourses/5364

Taur, Y., Ning, T. (2009). Fundamentals of Modern VLSI Devices, 2nd Ed., Cambridge univ. Press, Cambridge, UK.

Kruglyak, Yu. Landauer-Datta-Lundstrom (2014). Generalized Transport Model for Nanoelectronics, Journal of Nanoscience, 725420, 15. doi: 10.1155/2014/725420

Kruglyak, Yu. A. (2014). A Generalized Landauer-Datta-Lundstrom Electron Transport Model, Russian Journal of Physical Chemistry, 88 (11), 1826–1836.

Published

2015-03-24

Issue

Section

Physics and mathematics