Model representation for formation of frontal porous silicon layers for solar cells

Authors

  • Валерій Юрійович Єрохов Lviv Polytechnic National University Bandera Str., 12, Lviv, Ukraine, 79013, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.39154

Keywords:

antireflective coating, porous silicon, model representation, electrochemical etching, solar cell

Abstract

For obtaining the frontal functional layers of solar cells (SC) was made deep analysis of existing models of porous silicon. The selected models are most effective to create an efficient and cost-effective coating on porous silicon and best adapted to the processes of creating silicon solar cells. Using layers of porous silicon obtained from the model representation simplify the work cycle, reduce product cost and improve performance that will increase the efficiency of manufacturing technology of solar cells

Author Biography

Валерій Юрійович Єрохов, Lviv Polytechnic National University Bandera Str., 12, Lviv, Ukraine, 79013

Doctor of technical sciences, Associate Professor

Department of Semiconductor Electronics 

References

Liena, S.-Y., Wuua, D.-S., Yeh, W.-C. (2006). Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique. Solar Energy Materials & Solar Cells, 90 (16), 2710–2719. doi: 10.1016/j.solmat.2006.04.001

Canham L. T. (1990). Porous silicon multilayer optical waveguides. Appl. Phys. Lett, 57, 1046.

Prokes, S. M., Glembocki, O. J., Bermudez, V. M., Kaplan, R. (1992). SiHx excitation: An alternate mechanism for porous Si photoluminescence. Physical Review B, 45 (23), 13788. doi: 10.1103/physrevb.45.13788

Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J., Cardona, M. (1992). Structural and Optical Properties of Porous Silicon Nanostructures. Solid State Commun, 81, 307.

Koch, F. (1993). Porous Silicon: Material, Technology and Devices. Mater. Res. Sot. Symp. Proc., 298, 319.

Witten, T. A., Sander, L. M. (1983). Diffusion-limited aggregation. Physical Review B, 27 (9), 5686–5697. 10.1103/physrevb.27.5686

Smith, R. L., Collins, S. D. (1989). Generalized model for the diffusion-limited aggregation and Eden models of cluster growth. Physical Review A, 39 (10), 5409–5413. doi: 10.1103/physreva.39.5409

Parkhutik, V. P., Shershulsky, V. I. (1992). Theoretical modeling of porous oxide growth on aluminium. Journal of Physics D: Applied Physics, 25 (8), 1258–1263. doi: 10.1088/0022-3727/25/8/017

Carstensen J., Prange, R., Foil, H. (1999). A model for current-voltage oscillations at the silicon electrode and comparison with experimental results. Journal of The Electrochemical Society, 146 (3), 1134–1140. doi: 10.1149/1.1391734

Valance, A. (1997). Theoretical model for early stages of porous silicon formation from n- and p-type silicon substrates. Physical Review B, 55 (15), 9706–9715. doi: 10.1103/physrevb.55.9706

Kang, Y., Jorne, J. (1997). Dissolution mechanism for p-Si during porous silicon formation. Journal of The Electrochemical Society, 144 (9), 3104–3110. doi: 10.1149/1.1837966

Chazalviel, J.-N., Wehrspohn, R. B., Ozanam, F. (2000). Electrochemical preparation of porous semiconductors: from phenomenology to understanding. Materials Science and Engineering (B), 69-70, 1–10. doi: 10.1016/s0921-5107(99)00285-8

Emel'yanov, V. I., Eremin, K. I., Starkov, V. V. (2002). Defect-deformation mechanism of spontaneous nucleation of an ensemble of pores in solids and its experimental verification. Quantum Electronics, 32 (6), 473–475. doi: 10.1070/qe2002v032n06abeh002225

Emel'janov, V. I. (1999). Samoorganizacija uporjadochennyh defektno-deformacionnyh mikro- i nanostruktur na poverhnosti tverdyh tel pod dejstviem lazernogo izluchenija. Kvant, jelektronika, 27 (7), 2–18.

Walgraef, D., Ghoniem N. М., Lauzeral, J. (1997). Deformation patterns in thin films under uniform laser irradiation. Physical Review B, 56 (23), 15361–15377. doi: 10.1103/physrevb.56.15361

Emel'yanov, V. I. (1992). Generation-Diffusion-Deformational Instabilities and Formation of Ordered Defect Structures on Surfaces of Solids under the Action of Strong Laser Beams. Laser Physics, 2 (4), 389–466.

Lehmann, V. (1993).The physics of macropore formation in low doped n-type silicon. Journal of The Electrochemical Society, 140 (10), 2836–2843. doi: 10.1149/1.2220919

Lehmann, V., Ronnebeck, S. (2004). The physics of macropore formation in low-doped p-type silicon. Journal of The Electrochemical Society, 146 (8), 2968–2975. doi: 10.1149/1.1392037

Zhang, X. G. (2004). Morphology and Formation Mechanisms of Porous Silicon. Journal of The Electrochemical Society, 151 (1), 69–80. doi: 10.1149/1.1632477

Lehmann, V., Gosele, U. (1991). Porous silicon formation: A quantum wire effect. Applied Physics Letters, 58 (8), 856–858. doi: 10.1063/1.104512

Kompan, M. E., Kuzminov, E. G., Kulik, V. (1996). Observation of a compressed state of the quantum wire material in porous silicon by the method of Raman scattering. Journal of Experimental and Theoretical Physics Letters, 64 (10), 748–753.

Starkov, V. V., Starostina, E. A., Vyatkin, A. F., Volkov, V. T. (2000). Dielectric porous layer formation in Si and Si/Ge by local stain etching. Physica status solidi (a), 182 (1), 93–96. doi: 10.1002/1521-396x(200011)182:1<93::aid-pssa93>3.0.co;2-8

Yerokhov, V. Yu., Melnyk, I. I. (1999). Porous silicon in solar cell structures: A review of achievements and modern directions of further use . Journal: Renewable and Sustainable Energy Reviews, 3 (4), 291–322. doi: 10.1016/s1364-0321(99)00005-2

Huang, Y., Ma, Q.-L., Meng, M. (2011). Porous silicon based solar cells. Materials Science Forum, 663-665, 836–839. doi: 10.4028/www.scientific.net/msf.663-665.836

Foil, Н., Christophersen, М., Carstensen, J., Hasse, G. (2002). Formation and application of porous silicon. Materials Science and Engineering (R), 39, 93–141.

Published

2015-03-24

Issue

Section

Technical Sciences