Модельне відображення створення фронтальних шарів пористого кремнію для сонячних елементів

Autor

  • Валерій Юрійович Єрохов Національний університет „Львівська політехніка” вул. С. Бандери, 12, Львів, 79013, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.39154

Słowa kluczowe:

антивідбивне покриття, пористий кремній модельне представлення, електрохімічне травлення, фотоелектричний перетворювач

Abstrakt

Для отримання фронтальних функціональних шарів сонячних елементів (СЕ) був зроблен глибокий аналіз існуючих моделей пористого кремнію. Відібрані моделі, максимально дієві для створення ефективного та рентабельного покриття на основі пористого кремнію (ПК) і максимально адаптовані до процесів створення кремнієвих сонячних елементів. Використання шарів ПК, отриманих на основі модельного представлення, спростить технологічний цикл, зменшить вартість виробу та підвищить експлуатаційні характеристики, тобто дозволить підвищити ефективність технології виготовлення сонячних елементів

Biogram autora

Валерій Юрійович Єрохов, Національний університет „Львівська політехніка” вул. С. Бандери, 12, Львів, 79013

Кандидат фізико-математичних наук

Доцент кафедри „Напівпровідникова електроніка”

Bibliografia

Liena, S.-Y., Wuua, D.-S., Yeh, W.-C. (2006). Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique. Solar Energy Materials & Solar Cells, 90 (16), 2710–2719. doi: 10.1016/j.solmat.2006.04.001

Canham L. T. (1990). Porous silicon multilayer optical waveguides. Appl. Phys. Lett, 57, 1046.

Prokes, S. M., Glembocki, O. J., Bermudez, V. M., Kaplan, R. (1992). SiHx excitation: An alternate mechanism for porous Si photoluminescence. Physical Review B, 45 (23), 13788. doi: 10.1103/physrevb.45.13788

Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J., Cardona, M. (1992). Structural and Optical Properties of Porous Silicon Nanostructures. Solid State Commun, 81, 307.

Koch, F. (1993). Porous Silicon: Material, Technology and Devices. Mater. Res. Sot. Symp. Proc., 298, 319.

Witten, T. A., Sander, L. M. (1983). Diffusion-limited aggregation. Physical Review B, 27 (9), 5686–5697. 10.1103/physrevb.27.5686

Smith, R. L., Collins, S. D. (1989). Generalized model for the diffusion-limited aggregation and Eden models of cluster growth. Physical Review A, 39 (10), 5409–5413. doi: 10.1103/physreva.39.5409

Parkhutik, V. P., Shershulsky, V. I. (1992). Theoretical modeling of porous oxide growth on aluminium. Journal of Physics D: Applied Physics, 25 (8), 1258–1263. doi: 10.1088/0022-3727/25/8/017

Carstensen J., Prange, R., Foil, H. (1999). A model for current-voltage oscillations at the silicon electrode and comparison with experimental results. Journal of The Electrochemical Society, 146 (3), 1134–1140. doi: 10.1149/1.1391734

Valance, A. (1997). Theoretical model for early stages of porous silicon formation from n- and p-type silicon substrates. Physical Review B, 55 (15), 9706–9715. doi: 10.1103/physrevb.55.9706

Kang, Y., Jorne, J. (1997). Dissolution mechanism for p-Si during porous silicon formation. Journal of The Electrochemical Society, 144 (9), 3104–3110. doi: 10.1149/1.1837966

Chazalviel, J.-N., Wehrspohn, R. B., Ozanam, F. (2000). Electrochemical preparation of porous semiconductors: from phenomenology to understanding. Materials Science and Engineering (B), 69-70, 1–10. doi: 10.1016/s0921-5107(99)00285-8

Emel'yanov, V. I., Eremin, K. I., Starkov, V. V. (2002). Defect-deformation mechanism of spontaneous nucleation of an ensemble of pores in solids and its experimental verification. Quantum Electronics, 32 (6), 473–475. doi: 10.1070/qe2002v032n06abeh002225

Emel'janov, V. I. (1999). Samoorganizacija uporjadochennyh defektno-deformacionnyh mikro- i nanostruktur na poverhnosti tverdyh tel pod dejstviem lazernogo izluchenija. Kvant, jelektronika, 27 (7), 2–18.

Walgraef, D., Ghoniem N. М., Lauzeral, J. (1997). Deformation patterns in thin films under uniform laser irradiation. Physical Review B, 56 (23), 15361–15377. doi: 10.1103/physrevb.56.15361

Emel'yanov, V. I. (1992). Generation-Diffusion-Deformational Instabilities and Formation of Ordered Defect Structures on Surfaces of Solids under the Action of Strong Laser Beams. Laser Physics, 2 (4), 389–466.

Lehmann, V. (1993).The physics of macropore formation in low doped n-type silicon. Journal of The Electrochemical Society, 140 (10), 2836–2843. doi: 10.1149/1.2220919

Lehmann, V., Ronnebeck, S. (2004). The physics of macropore formation in low-doped p-type silicon. Journal of The Electrochemical Society, 146 (8), 2968–2975. doi: 10.1149/1.1392037

Zhang, X. G. (2004). Morphology and Formation Mechanisms of Porous Silicon. Journal of The Electrochemical Society, 151 (1), 69–80. doi: 10.1149/1.1632477

Lehmann, V., Gosele, U. (1991). Porous silicon formation: A quantum wire effect. Applied Physics Letters, 58 (8), 856–858. doi: 10.1063/1.104512

Kompan, M. E., Kuzminov, E. G., Kulik, V. (1996). Observation of a compressed state of the quantum wire material in porous silicon by the method of Raman scattering. Journal of Experimental and Theoretical Physics Letters, 64 (10), 748–753.

Starkov, V. V., Starostina, E. A., Vyatkin, A. F., Volkov, V. T. (2000). Dielectric porous layer formation in Si and Si/Ge by local stain etching. Physica status solidi (a), 182 (1), 93–96. doi: 10.1002/1521-396x(200011)182:1<93::aid-pssa93>3.0.co;2-8

Yerokhov, V. Yu., Melnyk, I. I. (1999). Porous silicon in solar cell structures: A review of achievements and modern directions of further use . Journal: Renewable and Sustainable Energy Reviews, 3 (4), 291–322. doi: 10.1016/s1364-0321(99)00005-2

Huang, Y., Ma, Q.-L., Meng, M. (2011). Porous silicon based solar cells. Materials Science Forum, 663-665, 836–839. doi: 10.4028/www.scientific.net/msf.663-665.836

Foil, Н., Christophersen, М., Carstensen, J., Hasse, G. (2002). Formation and application of porous silicon. Materials Science and Engineering (R), 39, 93–141.

##submission.downloads##

Opublikowane

2015-03-24

Numer

Dział

Technical Sciences