Measurement of electrophysical properties in the Landauer-Datta-Lundstrom transport model
DOI:
https://doi.org/10.15587/2313-8416.2015.40155Keywords:
nanophysics, nanoelectronics, resistance measurement, van der Pauw method, Hall effect, thermal measurement, artifact measurement, Nernst effect, Shubnikov effectAbstract
Experimental methods of measuring the resistance in the frame of the LDL model, including measurements under applied external magnetic field are discussed, namely: method of variable resistor length, four-point measurement scheme, the classical method of the Hall effect measurement and different variants of the van der Pauw method, temperature measurements and accounting for artifacts (Nernst effect), measurements in strong magnetic fields(Shubnikov–deHaaseffect).
References
Datta Supriyo (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Company, 473. Available at: https://nanohub.org/courses/FoN1
Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company, 227. Available at: https://nanohub.org/resources/11
Kruglyak, Yu. (2014). Landauer-Datta-Lundstrom Generalized Transport Model for Nanoelectronics. Journal of Nanoscience, 2014, 1–15. doi: 10.1155/2014/725420
Kruglyak, Yu. A. (2014). Generalized Landauer-Datta-Lundstrom model of electron and heat transport for micro- and nanoelectronics. ScienceRise, 5/2 (5), 21–38. doi: 10.15587/2313-8416.2014.30728
Danielson, L. (1996). Measurement of the thermoelectric properties of bulk and thin film materials. Available at: http://www.osti.gov/scitech/biblio/663573
Berger, H. H. (1972). Models for contacts to planar devices. Solid-State Electronics, 15 (2), 145–158. doi: 10.1016/0038-1101(72)90048-2
Schroder, D. K. (2006), Semiconductor Material and Device Characterization, Wiley Interscience, New York, 800.
Smith, R. S. (1993). Electrical characterization of GaAs materials and devices. By D. C. Look, Wiley, Chichester 1989, 280. doi: 10.1002/adma.19930050429
Kruglyak, Yu. A. (2015). Landauer-Datta-Lundstrom conductivity model for micro- and nanoelectronics and Boltzmann transport equation. ScienceRise, 3/2 (8), 108–116. doi: 10.15587/2313-8416.2015.38848
van der Pauw, L. J. (1958). A method for measuring specific resistivity and Hall effect of discs of arbitrary shape. Phillips Research Reports, 13, 1–9.
Lundstrom, M. (2000). Fundamentals of Carrier Transport. Cambridge UK: Cambridge University Press, 418. doi: 10.1017/cbo9780511618611
Ashkroft, N., Mermin, N. (1979). Physics of solid. Vol. 1-2. Moscow: Mir, 458.
Kruglyak, Yu. A. (2015). Accounting for scattering in Landauer-Datta-Lundstrom transport model. ScienceRise, 3/2 (8), 100–107. doi: 10.15587/2313-8416.2015.38847
Kruglyak, Yu. A. (2015). Thermoelectric phenomena and devices in Landauer-Datta-Lundstrom conception. ScienceRise, 1/2 (6), 69–77. doi: 10.15587/2313-8416.2015.35891
Kruglyak, Yu. A. (2015). Thermoelectric coefficients in Landauer-Datta-Lundstrom transport model. ScienceRise, 1/2 (6), 78–89. doi: 10.15587/2313-8416.2015.35893
Wolfe, C. M., Holonyak, N., Stillman, G. E. (1989). Physical Properties of Semiconductors. Prentice Hall, Englewood Cliffs, N. Jersey, 368.
Kruglyak, Yu. A. (2015). Graphene in Landauer-Datta-Lundstrom transport model, ScienceRise, 2/2 (7), 93–106. doi: 10.15587/2313-8416.2015.36443
Cage, M. E., Dziuba, R. F., Field, B. F. (1985). A test of the quantum Hall effect as a resistance standard, IEEE Transactions on Instrumentation and Measurement, IM-34 (2), 301–303. doi: 10.1109/tim.1985.4315329
Schubnikov, L. W., de Haas, W. J. (1930). Proceedings of the Royal Netherlands Academy of Arts and Science, 33, 130.
Schubnikov, L. W., de Haas, W. J. (1930). Proceedings of the Royal Netherlands Academy of Arts and Science, 33, 163.
Holcomb, D. F. (1999). Quantum electrical transport in samples of limited dimensions. American Journal of Physics, 67, 278–297. doi: 10.1119/1.19251
Davies. J. H. (1997), The physics of Low-Dimensional Semiconductors, Cambridge Univ. Press, Cambridge, 438. doi: 10.1017/cbo9780511819070
Datta, S. (1995). Electronic Transport in Mesoscopic Systems. Cambridge: Cambridge University Press: 2001, 377. doi: 10.1017/cbo9780511805776
Kruglyak, Yu. A., Strikha, M. V. (2014). Lessons of nanoelectronics: Hall effect and measurement of electrochemical potentials within "bottom - up" approach, Sensor Electronics Microsys. Tech., 11 (1), 5–27.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Юрій Олексійович Кругляк
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.