Измерение электрофизических свойств в концепции транспортной модели Ландауэра-Датты-Лундстрома

Auteurs-es

  • Юрій Олексійович Кругляк Одесский государственный экологический университет, Ukraine

DOI :

https://doi.org/10.15587/2313-8416.2015.40155

Mots-clés :

нанофизика, наноэлектроника, измерение сопротивления, метод ван дер Пау, эффект Холла, температурные измерения, учет артефактов, эффект Нернста, эффект Шубникова

Résumé

Обсуждаются экспериментальные методы измерения сопротивления в модели ЛДЛ, в том числе в условиях внешнего приложенного магнитного поля: метод переменной длины проводника, четырехточечная схема измерений, классический метод измерения эффекта Холла и различные варианты метода ван дер Пау, а также температурные измерения и учет артефактов (эффект Нернста), измерения в сильных магнитных полях (эффект Шубникова – де Гааза).

Biographie de l'auteur-e

Юрій Олексійович Кругляк, Одесский государственный экологический университет

Доктор химических наук, профессор

Кафедра информационных технологий

Références

Datta Supriyo (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Company, 473. Available at: https://nanohub.org/courses/FoN1

Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company, 227. Available at: https://nanohub.org/resources/11

Kruglyak, Yu. (2014). Landauer-Datta-Lundstrom Generalized Transport Model for Nanoelectronics. Journal of Nanoscience, 2014, 1–15. doi: 10.1155/2014/725420

Kruglyak, Yu. A. (2014). Generalized Landauer-Datta-Lundstrom model of electron and heat transport for micro- and nanoelectronics. ScienceRise, 5/2 (5), 21–38. doi: 10.15587/2313-8416.2014.30728

Danielson, L. (1996). Measurement of the thermoelectric properties of bulk and thin film materials. Available at: http://www.osti.gov/scitech/biblio/663573

Berger, H. H. (1972). Models for contacts to planar devices. Solid-State Electronics, 15 (2), 145–158. doi: 10.1016/0038-1101(72)90048-2

Schroder, D. K. (2006), Semiconductor Material and Device Characterization, Wiley Interscience, New York, 800.

Smith, R. S. (1993). Electrical characterization of GaAs materials and devices. By D. C. Look, Wiley, Chichester 1989, 280. doi: 10.1002/adma.19930050429

Kruglyak, Yu. A. (2015). Landauer-Datta-Lundstrom conductivity model for micro- and nanoelectronics and Boltzmann transport equation. ScienceRise, 3/2 (8), 108–116. doi: 10.15587/2313-8416.2015.38848

van der Pauw, L. J. (1958). A method for measuring specific resistivity and Hall effect of discs of arbitrary shape. Phillips Research Reports, 13, 1–9.

Lundstrom, M. (2000). Fundamentals of Carrier Transport. Cambridge UK: Cambridge University Press, 418. doi: 10.1017/cbo9780511618611

Ashkroft, N., Mermin, N. (1979). Physics of solid. Vol. 1-2. Moscow: Mir, 458.

Kruglyak, Yu. A. (2015). Accounting for scattering in Landauer-Datta-Lundstrom transport model. ScienceRise, 3/2 (8), 100–107. doi: 10.15587/2313-8416.2015.38847

Kruglyak, Yu. A. (2015). Thermoelectric phenomena and devices in Landauer-Datta-Lundstrom conception. ScienceRise, 1/2 (6), 69–77. doi: 10.15587/2313-8416.2015.35891

Kruglyak, Yu. A. (2015). Thermoelectric coefficients in Landauer-Datta-Lundstrom transport model. ScienceRise, 1/2 (6), 78–89. doi: 10.15587/2313-8416.2015.35893

Wolfe, C. M., Holonyak, N., Stillman, G. E. (1989). Physical Properties of Semiconductors. Prentice Hall, Englewood Cliffs, N. Jersey, 368.

Kruglyak, Yu. A. (2015). Graphene in Landauer-Datta-Lundstrom transport model, ScienceRise, 2/2 (7), 93–106. doi: 10.15587/2313-8416.2015.36443

Cage, M. E., Dziuba, R. F., Field, B. F. (1985). A test of the quantum Hall effect as a resistance standard, IEEE Transactions on Instrumentation and Measurement, IM-34 (2), 301–303. doi: 10.1109/tim.1985.4315329

Schubnikov, L. W., de Haas, W. J. (1930). Proceedings of the Royal Netherlands Academy of Arts and Science, 33, 130.

Schubnikov, L. W., de Haas, W. J. (1930). Proceedings of the Royal Netherlands Academy of Arts and Science, 33, 163.

Holcomb, D. F. (1999). Quantum electrical transport in samples of limited dimensions. American Journal of Physics, 67, 278–297. doi: 10.1119/1.19251

Davies. J. H. (1997), The physics of Low-Dimensional Semiconductors, Cambridge Univ. Press, Cambridge, 438. doi: 10.1017/cbo9780511819070

Datta, S. (1995). Electronic Transport in Mesoscopic Systems. Cambridge: Cambridge University Press: 2001, 377. doi: 10.1017/cbo9780511805776

Kruglyak, Yu. A., Strikha, M. V. (2014). Lessons of nanoelectronics: Hall effect and measurement of electrochemical potentials within "bottom - up" approach, Sensor Electronics Microsys. Tech., 11 (1), 5–27.

Téléchargements

Publié-e

2015-04-27

Numéro

Rubrique

Physics and mathematics